ANEXO 6

MODELOS DINÁMICOS

Datos de los Modelos de Generadores, Escitadores, Gobernadores y Estabililizadores de Panamá

/* BASE DE DATOS DE PANAMA

/* MODELO DE GENERADORES DE PANAMA
101,'GENSAL' ,B1, 4,0.02,0.02,2.69,1,0.99,0.833,0.3452,0.3100,0.16,0.19,0.343/
102,'GENSAL' ,B2, 4,0.02,0.02,2.69,1,0.99,0.833,0.3452,0.3100,0.16,0.19,0.343/
108,'GENSAL' ,B3, 5,0.07,0.08,2.96,1,0.90,0.570,0.4000,0.24,0.10,0.92,1.01/
97,'GENSAL' ,F1,9,0.06,0.09,4.50,1,1.02,0.54,0.3,0.155,0.12,0.2,0.67000/
98,'GENSAL' ,F2,9,0.06,0.09,4.50,1,1.02,0.54,0.3,0.155,0.12,0.2,0.67000/
99,'GENSAL' ,F3,9,0.06,0.09,4.50,1,1.02,0.54,0.3,0.155,0.12,0.2,0.67000/
94,'GENSAL' ,L1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
95,'GENSAL' ,L2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
90,'GENSAL' ,E1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
91,'GENSAL' ,E2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
134,'GENSAL' ,G1,5,0.02,0.09,1.398,1,1.09,0.84,0.47,0.36,0.14,0.19,0.59000/
135,'GENSAL' ,G2,5,0.02,0.09,1.398,1,1.09,0.84,0.47,0.36,0.14,0.19,0.59000/
136,'GENSAL' ,G3,5,0.02,0.09,1.398,1,1.09,0.84,0.47,0.36,0.14,0.19,0.59000/ 140,'GENSAL' ,G1,5,0.02,0.09,2.233,1,1.01,0.63,0.33,0.33,0.12,0.19,0.59000/ 140,'GENSAL' ,G2,5,0.02,0.09,2.233,1,1.01,0.63,0.33,0.33,0.12,0.19,0.59000/ 140,'GENSAL' ,G3,5,0.02,0.09,2.233,1,1.01,0.63,0.33,0.33,0.12,0.19,0.59000/ 141,'GENSAL' ,G4,5,0.02,0.09,2.210,1,1.01,0.78,0.38,0.38,0.12,0.19,0.59000/ 141,'GENSAL' ,G5,5,0.02,0.09,1.991,1,1.10,0.78,0.38,0.38,0.12,0.19,0.59000/ 141,'GENSAL' ,G6,5,0.02,0.09,1.991,1,1.10,0.78,0.38,0.38,0.12,0.19,0.59000/ 142,'GENSAL' ,C1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 143,'GENSAL' ,C2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 193,'GENSAL' ,G1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 193,'GENSAL' ,G2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 193,'GENSAL' ,G3,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 204,'GENSAL' ,1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 204,'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 106,'GENSAL' ,M1,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 106,'GENSAL' ,M2,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 106,'GENSAL' ,M3,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 107,'GENSAL' ,M4,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 107,'GENSAL' ,M5,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 107,'GENSAL' ,M6,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 75,'GENSAL' ,P1,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75,'GENSAL' ,P2,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75,'GENSAL', P3,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75,'GENSAL' , P4,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75,'GENSAL' ,P5,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75,'GENSAL' ,P6,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76,'GENSAL' ,1P,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76,'GENSAL' ,2P,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76,'GENSAL' ,P0,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76,'GENSAL' ,P7,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76,'GENSAL' ,P8,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76,'GENSAL' ,P9,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 116,'GENSAL' ,P1,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 116,'GENSAL' ,P2,5.3,0.038,0.149,0.781,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 116,'GENSAL' ,P3,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 70,'GENROU' ,J5,8,0.05,0.7,0.1,1.45,0,2.01,1.3,0.171,0.6,0.116,0.06,0.1,0.50000/ 72,'GENROU' ,T8,5.936,0.022,0.541,0.045,1.45,0,2.078,1.931,0.188,0.377,0.129,0.162,0.1,0.50000/ 73,'GENROU' ,V9,6.5,0.023,0.7,0.1,1.887,0,1.72,1.61,0.2,0.6,0.16,0.145,0.1,0.40000/ 66,'GENROU' ,V2,5.1,0.02,0.7,0.1,4.45,0,1.41,1.35,0.156,0.6,0.12,0.06,0.1,0.50000/ 67,'GENROU' ,V3,5.1,0.02,0.7,0.1,4.45,0,1.41,1.35,0.156,0.6,0.12,0.06,0.1,0.50000/ 68,'GENROU' ,V4,5.1,0.02,0.7,0.1,4.45,0,1.41,1.35,0.156,0.6,0.12,0.06,0.1,0.50000/ 71,'GENROU' ,J6,8,0.05,0.7,0.1,1.45,0,2.01,1.3,0.171,0.6,0.116,0.06,0.1,0.50000/ 104,'GENROU' ,CO,7,0.025,0.60,0.05,1.35,0,2.50,2.30,0.25,0.40,0.20,0.06,0.1,0.50000/ 113,'GENROU' ,GP,8.8,0.04,0.7,0.1,3.0,0,2.01,1,0.684,0.8,0.561,0.06,0.1,0.50000/ 114,'GENROU' ,PG,8.8,0.04,0.7,0.1,3.0,0,2.01,1,0.684,0.8,0.561,0.06,0.1,0.50000/ 126,'GENROU' ,G1,8,0.05,0.7,0.1,0.5414,0,1.56,1.51,0.23,0.23,0.14,0.06,0.1,0.50000/ 127,'GENROU' ,G2,8,0.05,0.7,0.1,0.5414,0,1.56,1.51,0.23,0.23,0.14,0.06,0.1,0.50000/ 128,'GENROU' ,G3,5,0.05,0.7,0.1,3.12,0,1.95,1.89,0.33,0.33,0.15,0.055,0.1,0.50000/ 129,'GENROU' ,G4,5,0.05,0.7,0.1,4.73,0,1.95,1.95,0.3,0.3,0.16,0.05,0.1,0.5000/ 130,'GENROU' ,G5,5.0,0.05,0.700,0.10,1.45,0,1.8,1.8,0.2,0.2,0.15,0.068,0.1,0.50000/

151,'GENSAL' , $\mathbf{1}, \mathbf{7 , 0 . 0 6 , 0 . 0 9 , 2 . 4 4 , 1 , 1 . 0 9 , 0 . 6 2 , 0 . 2 , 0 . 1 1 , 0 . 1 , 0 . 1 , 0 . 5 0 0 0 0 /}$ 301,'GENSAL' ,C1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 303,'GENSAL' ,S1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 304,'GENSAL' ,A1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 302,'GENSAL' ,P1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 305,'GENSAL' ,1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 305,'GENSAL' ,2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 305,'GENSAL' ,3,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 307,'GENSAL' ,G1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 308,'GENSAL' ,G2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 311,'GENSAL' , $1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000 /$ 311,'GENSAL' ,2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 312,'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 312,'GENSAL' ,2 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 312,'GENSAL' , $3,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000 /$ 313, 'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2240,0.157,0.1,0.50000/ 313,'GENSAL' ,2 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2240,0.157,0.1,0.50000/ 314,'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 314,'GENSAL' ,2 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 314,'GENSAL' ,3 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 315,'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ $315, ' G E N S A L ', 2,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000 /$ 316,'GENSAL' ,1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 316,'GENSAL' ,2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 317,'GENSAL' ,M1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 317,'GENSAL' ,M2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 318,'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 319,'GENSAL' ,2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 340,'GENSAL' ,P1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 342,'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 342,'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 343,'GENSAL' ,1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 343,'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 343,'GENSAL' , 3 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 516,'GENSAL' ,G1,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 516,'GENSAL' ,G2,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 516,'GENSAL' ,G3,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 517,'GENSAL' ,G4,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 517,'GENSAL' ,G5,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 517,'GENSAL' ,G6,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 517,'GENSAL' ,G7,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
/* MODELO DE GOBERNADORES DE PANAMA
101,'HYGOV' ,B1,0.03,0.8,14.5,0.03,1,0.167,0.893,0.266,1.15,1.36,0.5,0.08/
102,'HYGOV' ,B2,0.03,0.8,14.5,0.03,1,0.167,0.893,0.266,1.15,1.36,0.5,0.08/
108,'HYGOV' ,B3,0.03,0.8,14.5,0.03,1,0.167,0.870,0.260,1.15,1.36,0.5,0.08/
97,'HYGOV' ,F1,0.03,0.5,11.8,0.03,0.2,0.167,0.95,0.05,1.85,1.05,0.5,0.08/
98,'HYGOV' ,F2,0.03,0.5,11.8,0.03,0.2,0.167,0.95,0.05,1.85,1.05,0.5,0.08/ 99,'HYGOV' ,F3,0.03,0.5,11.8,0.03,0.2,0.167,0.95,0.05,1.85,1.05,0.5,0.08/ 94,'HYGOV' ,L1,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/ 95,'HYGOV' ,L2,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/ 90,'HYGOV' ,E1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/ 91,'HYGOV' ,E2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/ 134,'HYGOV' ,G1,0.03,1.0,16,0.025,0.2,0.167,0.923,0.05,2.52,1.05,0.5,0.08/ 135,'HYGOV' ,G2,0.03,1.0,16,0.025,0.2,0.167,0.923,0.05,2.52,1.05,0.5,0.08/ 136,'HYGOV' ,G3,0.03,1.0,16,0.025,0.2,0.167,0.923,0.05,2.52,1.05,0.5,0.08/
73,'TGOV1' ,V9,0.06,0.05,0.859,0.0,1,3,0.00/
66,'TGOV1' ,V2,0.06,0.05,0.851,0.0,1,3,0.00/
67,'TGOV1' ,V3,0.06,0.05,0.851,0.0,1,3,0.00/
68,'TGOV1' ,V4,0.06,0.05,0.851,0.0,1,3,0.00/
128,'TGOV1' ,G3,0.03,0.05,0.74,0.327,1,3,0.00/
129,'TGOV1' ,G4,0.03,0.05,0.74,0.1,1,3,0.00/
70,'GAST' ,J5,0.04,0.05,0.05,3,1,2,0.84,0.05,0.5/
71,'GAST' ,J6,0.04,0.05,0.05,3,1,2,0.84,0.05,0.5/
72,'GAST' ,T8,0.04,0.05,0.05,3,1,2,0.7,0.05,0.5/
104,'GAST' , CO,0.03,0.015,0.2,5,1.05,0.67,0.84,0,0.5/
113,'GAST' ,GP,0.04,0.2,0.05,3,1,2,0.69,0.05,0.5/
114,'GAST' ,PG,0.04,0.2,0.05,3,1,2,0.69,0.05,0.5/
126,'GAST' ,G1,0.03,0.01,0.05,3,1,2,0.74,0.05,0.5/
127,'GAST' ,G2,0.03,0.01,0.05,3,1,2,0.74,0.05,0.5/

130,'GAST' ,G5,0.03,0.01,0.05,3,1,2,0.7,0.05,0.5/
106,'DEGOV1' ,M1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
106,'DEGOV1' ,M2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
106,'DEGOV1' ,M3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
107,'DEGOV1' ,M4,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
107,'DEGOV1' ,M5,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
107,'DEGOV1' ,M6,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
75,'DEGOV1' ,P1,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
75,'DEGOV1' ,P2,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
75,'DEGOV1' ,P3,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
75,'DEGOV1' ,P4,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
75,'DEGOV1' ,P5,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
75,'DEGOV1' ,P6,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
76,'DEGOV1' ,1P,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
76,'DEGOV1' ,2P,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
76,'DEGOV1' ,P0,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
76,'DEGOV1' ,P7,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
76,'DEGOV1' ,P8,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
76,'DEGOV1' ,P9,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
116,'DEGOV1' $\quad, \mathrm{P} 1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
116,'DEGOV1' ,P2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
116,'DEGOV1' $, \mathbf{P 3}, 0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
193,'HYGOV' ,G1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
193,'HYGOV' ,G2,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
193,'HYGOV' ,G3,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
204,'HYGOV' ,1,0.03,1.0,16,0.025,0.2,0.167,2.95,0.05,2.52,1.05,0.5,0.08/
204,'HYGOV' ,2,0.03,1.0,16,0.025,0.2,0.167,2.95,0.05,2.52,1.05,0.5,0.08/
151,'HYGOV' , $1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08 /$
301,'HYGOV' ,C1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 303,'HYGOV' ,S1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 304,'HYGOV' ,A1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 302,'HYGOV' ,P1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
305,'HYGOV' ,1 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
305,'HYGOV' ,2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
305,'HYGOV' , $3,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08 /$
142,'HYGOV' ,C1,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
143,'HYGOV' ,C2,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
307,'HYGOV' ,G1,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
308,'HYGOV' ,G2,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
311,'HYGOV' ,1 ,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
311,'HYGOV' ,2,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
312,'DEGOV1' , $1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
312,'DEGOV1' , $2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
312,'DEGOV1' , $3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
313,'DEGOV1' ,, $\mathbf{, 0 , 5 , 0 . 0 5 , 0 . 9 5 , 1 5 , 5 . 1 , 0 . 3 2 2 , 0 . 0 , 0 . 0 0 2 , 0 . 8 , 0 . 3 8 7 , 0 . 0 3 , 0 . 0 5 /}$
313,'DEGOV1' , $2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
314,'DEGOV1' , $1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
314,'DEGOV1' , $2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
314,'DEGOV1' , $3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
315,'DEGOV1' , $1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
315,'DEGOV1' , $2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05 /$
316,'HYGOV' , $1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.02,2.52,1.05,0.5,0.08 /$
316,'HYGOV' ,2 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.02,2.52,1.05,0.5,0.08/
317,'HYGOV' ,M1 ,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
317,'HYGOV' ,M2 ,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
318,'HYGOV' , $\mathbf{1}, \mathbf{0 . 0 3 , 0 . 8 , 4 , 0 . 0 3 , 0 . 2 , 0 . 1 6 7 , 0 . 8 7 , 0 . 4 5 , 1 , 1 . 2 , 0 . 5 , 0 . 0 8 /}$
319,'HYGOV' ,2,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
340,'HYGOV' ,P1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
342,'HYGOV' ,1 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
342,'HYGOV' ,2 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
343,'HYGOV' ,1,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/
$343, ' H Y G O V ', 2,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08 /$
343,'HYGOV' , 3,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/
516,'DEGOV1' ,G1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
516,'DEGOV1' ,G2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 516,'DEGOV1' ,G3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 517,'DEGOV1' ,G4,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 517,'DEGOV1' ,G5,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 517,'DEGOV1' ,G6,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 517,'DEGOV1' ,G7,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/

/* MODELO DE EXCITADORES DE PANAMA

101,'EXST1' ,B1,0.025,3,-3,0.0050,0.088,60,0.00133,6,-5.3,0.02,0.1,1.5/ 102,'EXST1' ,B2,0.025,3,-3,0.0050,0.088,60,0.00133,6,-5.3,0.02,0.1,1.5/ 108,'EXST1', $\mathbf{B 3 , 0 . 0 2 5 , 4 , - 1 , 0 . 0 0 8 0 , 0 . 0 8 8 , 5 0 , 0 . 0 0 5 , 1 0 , - 1 0 , 0 . 0 2 , 0 . 1 0 , 1 . 5 /}$ 97,'EXST1' ,F1,0.025,3,-3,0.0080,0.088,60,0.00133,6,-5.3,0,0.0,0.3/ 98,'EXST1' $, \mathbf{F 2}, 0.025,3,-3,0.0080,0.088,60,0.00133,6,-5.3,0,0.0,0.3 /$ 99,'EXST1' $\mathbf{}$,F3,0.025,3,-3,0.0080,0.088,60,0.00133,6,-5.3,0,0.0,0.3/ 94,'EXST1' $, \mathbf{L 1}, 0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5 /$ 95,'EXST1' ,L2,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/ 90,'EXST1' ,E1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 91,'EXST1' \quad, $22,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5 /$ 70,'IEEET2' , J5,0.025,400,0.1,6.59,0,1,1.3,0.2,5,1.3,2.4,0.03,5,0.5/ 71,'IEEET2' ,J6,0.025,400,0.1,6.59,0,1,1.3,0.2,5,1.3,2.4,0.03,5,0.5/ 72,'ESST4B' ,T8,0,3.38,3.38,1,-0.87,0.01,1,0,1,-0.87,0,5.92,0,7.4,0.11,0,2/ 73,'EXAC4' ,V9,0,0.2,-0.2,1.149,22.97,1000,0.002,5.236,-4.189,0/ 66,'IEEET1' ,V2,0,217.03,1,3,-3,1,0.8,0.078,0.726,0,2.4,0.03,5,0.5/ 67,'IEEET1' $, \mathrm{V} 3,0,126.37,1,3,-3,1,0.8,0.078,0.726,0,2.4,0.03,5,0.5 /$ 68,'IEEET1' ,V4,0,126.37,1,2,0,1,0.8,0.078,0.726,0,2.4,0.03,5,0.5/ 104,'EXAC1' , CO,0,1,1,4000,0.05,56,0,1.5,0.025,0.4,0.1,2,1,9,0.001,10,0.01/
106, 'ESAC8B' ,M1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
106, 'ESAC8B' , M2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
106, 'ESAC8B' ,M3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
107, 'ESAC8B' ,M4,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
107, 'ESAC8B' ,M5,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
107, 'ESAC8B' ,M6,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
116, 'ESAC8B' ,P1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
116, 'ESAC8B' , P2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
116, 'ESAC8B' ,P3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
75, 'SEXS' , P1,0.1,10,100,0.05,0,2.5/
75, 'SEXS' ,P2,0.1,10,100,0.05,0,2.5/
75, 'SEXS' , P3,0.1,10,100,0.05,0,2.5/
75, 'SEXS' ,P4,0.1,10,100,0.05,0,2.5/
75, 'SEXS' , P5,0.1,10,100,0.05,0,2.5/
75, 'SEXS' ,P6,0.1,10,100,0.05,0,2.5/
76, 'SEXS' ,1P,0.1,10,100,0.05,0,2.5/
76, 'SEXS' ,2P,0.1,10,100,0.05,0,2.5/
76, 'SEXS' , P0,0.1,10,100,0.05,0,2.5/
76, 'SEXS' , P7,0.1,10,100,0.05,0,2.5/
76, 'SEXS' ,P8,0.1,10,100,0.05,0,2.5/
76, 'SEXS' ,P9,0.1,10,100,0.05,0,2.5
113, 'SEXS' ,GP,0.2,10,100,0.05,0,4/
114, 'SEXS' ,PG,0.2,10,100,0.05,0,4/
126, 'SEXS' ,G1,0.2,10,100,0.05,0,4/
127, 'SEXS' ,G2,0.2,10,100,0.05,0,4/
128, 'SEXS' ,G3,0.1,10,100,0.05,0,4/
129, 'SEXS' ,G4,0.1,10,100,0.05,0,4/
130, 'SEXS' ,G5,0.1,10,100,0.05,0,4/
134, 'SEXS' ,G1,0.1,10,100,0.05,0,4/
135, 'SEXS' ,G2,0.1,10,100,0.05,0,4/
136, 'SEXS' ,G3,0.1,10,100,0.05,0,4/
140, 'SEXS' ,G1,0.1,10,100,0.05,0,4/
140, 'SEXS' ,G2,0.1,10,100,0.05,0,4/
140, 'SEXS' ,G3,0.1,10,100,0.05,0,4/
141, 'SEXS' ,G4,0.1,10,100,0.05,0,4/
141, 'SEXS' ,G5,0.1,10,100,0.05,0,4/
141, 'SEXS' ,G6,0.1,10,100,0.05,0,4/
193,'EXST1' ,G1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 193,'EXST1' ,G2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
193,'EXST1' ,G3,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
204,'EXST1' , $\mathbf{1}, \mathbf{0 . 0 2 5 , 3 , - 3 , 0 . 0 0 8 0 , 0 . 0 8 8 , 1 0 0 , 0 . 0 0 2 7 , 3 , - 3 , 0 . 0 2 , 0 . 1 , 1 . 5 /}$
204,'EXST1' $\mathbf{2}, \mathbf{2}, \mathbf{0 . 0 5 5 , 3 , - 3 , 0 . 0 0 8 0 , 0 . 0 8 8 , 1 0 0 , 0 . 0 0 2 7 , 3 , - 3 , 0 . 0 2 , 0 . 1 , 1 . 5 /}$
151,'EXST1' , , , 0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
301,'EXST1' , C1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
303,'EXST1' ,S1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
304,'EXST1' ,A1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
302,'EXST1' , P1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
305,'EXST1' ,1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
305,'EXST1' ,2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
305,'EXST1' ,3,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/

142,'EXST1' ,C1,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/ 143,'EXST1' ,C2,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/ 307,'EXST1' ,G1,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/ 308,'EXST1' ,G2,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/ 311,'EXST1' $\mathbf{~ , 1}, \mathbf{0 . 0 2 5 , 3 , - 3 , 0 . 0 0 8 0 , 0 . 0 8 8 , 1 0 0 , 0 . 0 0 2 7 , 3 , - 3 , 0 . 0 2 , 0 . 1 , 1 . 5 /}$ 311,'EXST1' ,2 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 312,'ESAC8B' ,1 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 312,'ESAC8B' ,2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 312,'ESAC8B' , $3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5 /$ 313,'ESAC8B' ,1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 313,'ESAC8B' ,2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 314,'ESAC8B' ,1 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 314,'ESAC8B' ,2 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 315,'ESAC8B' ,1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 315,'ESAC8B' ,2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 314,'ESAC8B' ,3 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 316,'EXST1' ,1 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 316,'EXST1' $\mathbf{2}, \mathbf{0 . 0 2 5 , 3 , - 3 , 0 . 0 0 8 0 , 0 . 0 8 8 , 1 0 0 , 0 . 0 0 2 7 , 3 , - 3 , 0 . 0 2 , 0 . 1 , 1 . 5 /}$ 317,'EXST1' ,M1 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 317,'EXST1' ,M2 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 318,'EXST1' ,1 ,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/ 318,'EXST1' , $2 \mathbf{2}, \mathbf{0 . 0 2 , 1 0 , - 1 0 , 0 . 0 2 5 , 0 . 1 0 , 3 0 , 0 . 0 5 , 3 . 5 , - 3 . 1 , 0 . 0 6 , 0 . 1 , 1 . 5 /}$ 340,'EXST1' ,P1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 342,'EXST1' ' $\mathbf{1}, \mathbf{0 . 0 2 5 , 3 , - 3 , 0 . 0 0 8 0 , 0 . 0 8 8 , 1 0 0 , 0 . 0 0 2 7 , 3 , - 3 , 0 . 0 2 , 0 . 1 , 1 . 5 /}$ 342,'EXST1' ,2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 343,'EXST1' ,1 ,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/ 343,'EXST1' ,2 ,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/ 343,'EXST1' , 3 , $\mathbf{0 . 0 2 5 , 3 , - 3 , 0 . 0 0 8 0 , 0 . 0 8 8 , 8 0 , 0 . 0 0 2 7 , 3 , - 3 , 0 . 0 2 , 0 . 1 , 1 . 5 /}$ 516, 'ESAC8B' ,G1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 516, 'ESAC8B' ,G2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 516, 'ESAC8B' ,G3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
/* MODELO DE ESTABILIZADORES DE PANAMA
97,'STAB2A' ,F1,1.0,4.4,10,1.8,1,1.41,0.01,0.05/
98,'STAB2A' ,F2,1.0,4.4,10,1.8,1,1.41,0.01,0.05/
99,'STAB2A' ,F3,1.0,4.4,10,1.8,1,1.41,0.01,0.05/
101,'STAB2A' ,B1,1.0,4.4,7.85,1.8,0.785,1.41,0.01,0.03/
102,'STAB2A' ,B2,1.0,4.4,7.85,1.8,0.785,1.41,0.01,0.03/
108,'STAB2A' ,B3,1.0,4.5,25,2,5,1,0.01,0.03/

MODELOS DE GENERADORES

GENSAL

Salient Pole Generator Model (Quadratic Saturation on d-Axis)

This model is located at system bus \# \qquad IBUS,
machine \qquad I.

This model uses CONs starting with \# \qquad J,
and STATEs starting with
\qquad for each of units =
The machine MVA is MBASE.
\qquad + j \qquad on
ZSORCE for this machine is the above MBASE.正

STATEs	$\#$	Description
K		$\mathrm{E}_{\mathrm{q}}^{\prime}$
$\mathrm{K}+1$		$\psi_{\mathrm{q}}^{\prime \prime}$
$\mathrm{K}+2$		$\psi \mathrm{kd}$
$\mathrm{K}+3$		Δ speed (pu)
$\mathrm{K}+4$		Angle (radians)

Note: $\mathrm{X}_{\mathrm{d}}, \mathrm{X}_{\mathrm{q}}, \mathrm{X}_{\mathrm{d}}{ }^{2} \mathrm{X}_{\mathrm{d}}, \mathrm{X}_{\mathrm{q}}{ }_{\mathrm{q}}, \mathrm{X}_{\mathrm{p}}, \mathrm{H}$, and D are in pu , machine MVA base.

IBUS, 'GENSAL', I, T' ${ }_{\text {do }}, \mathrm{T}^{\prime \prime \prime}{ }_{\mathrm{do}}, \mathrm{T}^{\prime \prime}{ }_{\mathrm{q} o}, \mathrm{H}, \mathrm{D}, \mathrm{X}_{\mathrm{d}}, \mathrm{X}_{\mathrm{q}}, \mathrm{X}^{\prime}{ }_{\mathrm{d}}, \mathrm{X}^{\prime \prime}{ }_{\mathrm{d}}, \mathrm{X}_{\mathrm{l}}, \mathrm{S}(1.0), \mathrm{S}(1.2) /$

GENROU

Round Rotor Generator Model (Quadratic Saturation)

This model is located at system bus
 IBUS,
machine
 I.

This model uses CONs starting with \qquad J, and STATEs starting with
\# \qquad K,
The machine MVA is \qquad for each of \qquad units = \qquad MBASE.

ZSORCE for this machine is \qquad +j \qquad on

the above MBASE

CONs	\#	Value	Description
J			$\left.\mathrm{T}^{\prime} \mathrm{do}^{(} \geqslant 0\right)(\mathrm{sec})$
J+1			$\mathrm{T}^{\prime \prime} \mathrm{do}^{\text {(}}>0$) (sec)
J+2			$\mathrm{T}^{\prime} \mathrm{qO}_{0}(\geqslant 0)(\mathrm{sec})$
J+3			$\mathrm{T}^{\prime \prime} \mathrm{q}_{0}(>0)(\mathrm{sec})$
J+4			Inertia, H
J+5			Speed damping, D
J+6			X_{d}
J+7			X_{q}
J+8			$\mathrm{X}^{\prime}{ }^{\text {d }}$
J+9			$\mathrm{X}^{\prime}{ }_{\mathrm{q}}$
J+10			$\mathrm{X}^{\prime \prime} \mathrm{d}^{2} \mathrm{X}_{\text {" }}$
J+11			X_{1}
${ }^{\mathrm{J}+12}$			S(1.0)
J+13			S(1.2)

STATEs	$\#$	Description
K		$\mathrm{E}_{\mathrm{q}}^{\prime}$
$\mathrm{K}+1$		$\mathrm{E}_{\mathrm{d}}^{\prime}$
$\mathrm{K}+2$		$\psi \mathrm{kd}$
$\mathrm{K}+3$		$\psi \mathrm{kq}$
$\mathrm{K}+4$		Δ speed (pu)
$\mathrm{K}+5$		Angle (radians)

Note: $\mathrm{X}_{\mathrm{d}}, \mathrm{X}_{\mathrm{q}}, \mathrm{X}_{\mathrm{d}}{ }_{\mathrm{d}}, \mathrm{X}_{\mathrm{q}}, \mathrm{X}^{\prime \prime}{ }_{\mathrm{d}}, \mathrm{X}^{\prime \prime}{ }_{\mathrm{q}}, \mathrm{X}_{\mathrm{b}}, \mathrm{H}$, and D are in pu, machine MVA base.
$\mathrm{X}_{\mathrm{q}}{ }_{\mathrm{q}}$ must be equal to $\mathrm{X}^{\prime \prime}{ }_{\mathrm{d}}$.
IBUS, 'GENROU', I, T' ${ }_{\text {do }}, \mathrm{T}^{\prime \prime}{ }_{\mathrm{do}}, \mathrm{T}^{\prime}{ }_{\mathrm{q}}, \mathrm{T}^{\prime \prime}{ }_{\mathrm{qo}}, \mathrm{H}, \mathrm{D}, \mathrm{X}_{\mathrm{d}}, \mathrm{X}_{\mathrm{q}}, \mathrm{X}^{\prime}{ }_{\mathrm{d}}, \mathrm{X}_{\mathrm{q}}{ }_{\mathrm{q}}, \mathrm{X}^{\prime \prime}{ }_{\mathrm{d}}, \mathrm{X}_{\mathrm{l}}, \mathrm{S}(1.0), \mathrm{S}(1.2) /$

MODELOS DE GOBERNADORES

HYGOV

Hydro Turbine-Governor

CONs	$\#$	Value	Description
J			R, permanent droop
$\mathrm{J}+1$			r, temporary droop
$\mathrm{J}+2$			$\mathrm{~T}_{\mathrm{r}}(>0)$ govemor time constant
$\mathrm{J}+3$			$\mathrm{~T}_{\mathrm{f}}(>0)$ filter time constant
$\mathrm{J}+4$			$\mathrm{~T}_{\mathrm{g}}(>0)$ servo time constant
$\mathrm{J}+5$			$\pm \mathrm{VELM}$, gate velocity limit
$\mathrm{J}+6$			$\mathrm{G}_{\mathrm{MAX}}$, maximum gate limit
$\mathrm{J}+7$			$\mathrm{G}_{\mathrm{MIN}}$, mimimum gate limit
$\mathrm{J}+8$			$\mathrm{~T}_{\mathrm{W}}(>0)$ water time constant
$\mathrm{J}+9$			$\mathrm{~A}_{\mathrm{t}}$, turbine gain
$\mathrm{J}+10$			$\mathrm{D}_{\text {turb }}$, turbine damping
$\mathrm{J}+11$			q_{NL}, no load flow

STATEs	$\#$	Description
K		e, filter output
$\mathrm{K}+1$		c, desired gate
$\mathrm{K}+2$		g, gate opening
$\mathrm{K}+3$		q, turbine flow

VARs	$\#$	Description
L		Speed reference
$\mathrm{L}+1$		h, turbine head

IBUS, 'HYGOV', I, R, r, $\mathrm{T}_{\mathrm{r}}, \mathrm{T}_{\mathrm{f}}, \mathrm{T}_{\mathrm{g}}$, VELM, $\mathrm{G}_{\mathrm{MAX}}, \mathrm{G}_{\mathrm{MIN}}, \mathrm{T}_{\mathrm{W}}, \mathrm{A}_{\mathrm{t}}, \mathrm{D}_{\text {turb }}, \mathrm{qNL}^{\prime}$

TGOV1

Steam Turbine-Governor

CONs	$\#$	Value	Description
J			R
$\mathrm{J}+1$			$\mathrm{~T}_{1}(>0)(\mathrm{sec})$
$\mathrm{J}+2$			$\mathrm{~V}_{\mathrm{MAX}}$
$\mathrm{J}+3$			$\mathrm{~V}_{\mathrm{M} \mathbb{N}}$
$\mathrm{J}+4$			$\mathrm{~T}_{2}(\mathrm{sec})$
$\mathrm{J}+5$			$\mathrm{~T}_{3}(>0)(\mathrm{sec})$
$\mathrm{J}+6$			D_{t}

STATE	$\#$	Description
K		Valve opening
$\mathrm{K}+1$		Turbine power

VAR	$\#$	Description
L		Reference

Note: $\mathrm{V}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{MIN}}, \mathrm{D}_{\mathrm{t}}$ are in per unit on generator base. $\mathrm{T}_{2} / \mathrm{T}_{3}=$ high-pressure fraction.
$\mathrm{T}_{3}=$ reheater time constant.
IBUS, 'TGOV1', $\mathrm{I}, \mathrm{R}, \mathrm{T}_{1}, \mathrm{~V}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{MIN}}, \mathrm{T}_{2}, \mathrm{~T}_{3}, \mathrm{D}_{\mathrm{t}} /$

GAST

Gas Turbine-Governor

CONs	\#	Value	Description
J			R (speed droop)
J+1			$\mathrm{T}_{1}(>0)(\mathrm{sec})$
J+2			$\mathrm{T}_{2}\left({ }^{(0)}\right.$ (sec$)$
J+3			$\mathrm{T}_{3}(>0)(\mathrm{sec})$
J+4			Ambient temperature load limit, AT
J+5			K_{T}
J+6			$\mathrm{V}_{\text {MAX }}$
J+7			$\mathrm{V}_{\text {MIN }}$
J+8			$\mathrm{D}_{\text {turb }}$

STATEs	$\#$	Description	
K		Fuel valve	
$\mathrm{K}+1$		Fuel flow	
$\mathrm{K}+2$		Exhaust temperature	
VAR	$\#$	Description	
L		Load reference	

IBUS, 'GAST', $\mathrm{I}, \mathrm{R}, \mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{AT}, \mathrm{K}_{\mathrm{T}}, \mathrm{V}_{\mathrm{MAX}}, \mathrm{V}_{\mathrm{MIN}}, \mathrm{D}_{\text {turb }} /$

DEGOV1

Woodward Diesel Governor

ICON	$\#$	Value	Description
M			Droop control: 0 = Throttle feedback $1=$ Electric power feedback

CONS	$\#$	Value	Description
J			$\mathrm{T}_{1}(\sec)$
$\mathrm{J}+1$			$\mathrm{~T}_{2}(\sec)$
$\mathrm{J}+2$			$\mathrm{~T}_{3}(\sec)$
$\mathrm{J}+3$			K
$\mathrm{~J}+4$			$\mathrm{~T}_{4}(\sec)$
$\mathrm{J}+5$			$\mathrm{~T}_{5}(\sec)$
$\mathrm{J}+6$			$\mathrm{~T}_{6}(\sec)$
$\mathrm{J}+7$			$\mathrm{~T}_{\mathrm{D}}\left(0 \leq \mathrm{T}_{\mathrm{D}} \leq 12^{*}\right.$ DELT $)(\mathrm{sec})$
$\mathrm{J}+8$			$\mathrm{~T}_{\mathrm{MAX}}$
$\mathrm{J}+9$			$\mathrm{~T}_{\mathrm{MIN}}$
$\mathrm{J}+10$			Droop
$\mathrm{J}+11$			$\mathrm{~T}_{\mathrm{E}}$

STATE	$\#$	Description
K		Electric control box 1
$\mathrm{~K}+1$		Electric control box 2
$\mathrm{~K}+2$		Actuator 1
$\mathrm{~K}+3$		Actuator 2
$\mathrm{~K}+4$		Actuator 3
$\mathrm{K}+5$		Power transducer

VARs	$\#$	Description	
L		Reference	
$\mathrm{L}+1$			
$:$			Delay table
$:$			
$\mathrm{L}+13$			

IBUS, 'DEGOV1', I, Droop Control, $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~K}, \mathrm{~T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{6}, \mathrm{~T}_{\mathrm{D}}, \mathrm{T}_{\mathrm{MAX}} \mathrm{T}_{\mathrm{MIN}} /$, Droop, $\mathrm{T}_{\mathrm{E}} /$

MODELOS DE EXCITADORES

Power Technologies, Inc. EXCITATION SYSTEM MODEL DATA SHEETS

EXST1

IEEE Type STl Excitation System

CONs	$\#$	Value	Description
J			T_{R}
$\mathrm{J}+1$			$\mathrm{~V}_{\text {IMAX }}$
$\mathrm{J}+2$			$\mathrm{~V}_{\mathrm{IMIN}}$
$\mathrm{J}+3$			$\mathrm{~T}_{\mathrm{C}}$
$\mathrm{J}+4$			$\mathrm{~T}_{\mathrm{B}}(\mathrm{sec})$
$\mathrm{J}+5$			$\mathrm{~K}_{\mathrm{A}}$
$\mathrm{J}+6$			$\mathrm{~T}_{\mathrm{A}}(\mathrm{sec})$
$\mathrm{J}+7$			$\mathrm{~V}_{\mathrm{RMAX}}$
$\mathrm{J}+8$			$\mathrm{~V}_{\mathrm{RMIN}}$
$\mathrm{J}+9$			$\mathrm{~K}_{\mathrm{C}}$
$\mathrm{J}+10$			$\mathrm{~K}_{\mathrm{F}}$
$\mathrm{J}+11$			$\mathrm{~T}_{\mathrm{F}}(>0)(\mathrm{sec})$

STATE	$\#$	Description
K		$\mathrm{V}_{\text {measured }}$
$\mathrm{K}+1$		Lead lag
$\mathrm{K}+2$		$\mathrm{~V}_{\mathrm{R}}$
$\mathrm{K}+3$		Feedback

IBUS, 'EXST1', I, $\mathrm{T}_{\mathrm{R}}, \mathrm{V}_{\text {IMAX }}, \mathrm{V}_{\text {IMIN }}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{B}}, \mathrm{K}_{\mathrm{A}}, \mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{RMAX}}, \mathrm{V}_{\mathrm{RMIN}}, \mathrm{K}_{\mathrm{C}}, \mathrm{K}_{\mathrm{F}}, \mathrm{T}_{\mathrm{F}}$ '

$\mathrm{V}_{\mathrm{S}}=\mathrm{VOTHSG}+\mathrm{VUEL}+$ VOEL

IEEET2

IEEE Type 2 Excitation System

CONs	$\#$	Value	Description
J			$\mathrm{T}_{\mathrm{R}}(\mathrm{sec})$
$\mathrm{J}+1$			$\mathrm{~K}_{\mathrm{A}}$
$\mathrm{J}+2$			$\mathrm{~T}_{\mathrm{A}}(\mathrm{sec})$
$\mathrm{J}+3$			$\mathrm{~V}_{\mathrm{RMAXI}}$ or zero
$\mathrm{J}+4$			$\mathrm{~V}_{\mathrm{RMIN}}$
$\mathrm{J}+5$			$\mathrm{~K}_{\mathrm{E}}$
$\mathrm{J}+6$			$\mathrm{~T}_{\mathrm{E}}(>0)(\mathrm{sec})$
$\mathrm{J}+7$			$\mathrm{~K}_{\mathrm{F}}$
$\mathrm{J}+8$			$\mathrm{~T}_{\mathrm{F} 1}(>0)(\mathrm{sec})$
$\mathrm{J}+9$			$\mathrm{~T}_{\mathrm{F} 2}(>0)(\mathrm{sec})$
$\mathrm{J}+10$			E_{1}
$\mathrm{~J}+11$			$\mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{1}\right)$
$\mathrm{J}+12$			E_{2}
$\mathrm{~J}+13$			$\mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{2}\right)$

STATEs	$\#$	Description
K		Sensed V_{T}
$\mathrm{K}+1$		Regulator output, V_{R}
$\mathrm{K}+2$		Exciter output, EFD
$\mathrm{K}+3$		First feedback integrator
$\mathrm{K}+4$		Second feedback integrator

VARs	$\#$		Description
L		K_{E}	

IBUS, 'IEEET2', $\mathrm{I}, \mathrm{T}_{\mathrm{R}}, \mathrm{K}_{\mathrm{A}}, \mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{RMAX}}, \mathrm{V}_{\mathrm{RMIN}}, \mathrm{K}_{\mathrm{E}}, \mathrm{T}_{\mathrm{E}}, \mathrm{K}_{\mathrm{F}}, \mathrm{T}_{\mathrm{F} 1}, \mathrm{~T}_{\mathrm{F} 2}, \mathrm{E}_{1}, \mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{1}\right), \mathrm{E}_{2}, \mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{2}\right) /$

ESST4B

IEEE Type ST4B Potential or Compounded Source-Controlled Rectifier Exciter

This model is located at system bus
machine
This model uses CONs starting with
and STATEs starting with
 THETAP/

EXAC4

IEEE Type AC4 Excitation System

CONs	\#	Value	Description	STATEs	\#	Description
J			T_{R}	K		$\mathrm{V}_{\text {measured }}$
J+1			VIMAX	K+1		Lead lag
J +2			$\mathrm{V}_{\text {IMIN }}$	K+2		V_{R}

IBUS, 'EXAC4', $\mathrm{I}, \mathrm{T}_{\mathrm{R}}, \mathrm{V}_{\mathrm{IMAX}}, \mathrm{V}_{\mathrm{IM}}, \mathrm{T}_{\mathrm{C}}, \mathrm{T}_{\mathrm{B}}, \mathrm{K}_{\mathrm{A}}, \mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{RMAX}}, \mathrm{V}_{\mathrm{RMN}}, \mathrm{K}_{\mathrm{C}}$

$V S=$ VOTHSG + VUEL + VOEL

IEEET1

IEEE Type 1 Excitation System

CONS	$\#$	Value	Description
J			$\mathrm{T}_{\mathrm{R}}(\mathrm{sec})$
$\mathrm{J}+1$			$\mathrm{~K}_{\mathrm{A}}$
$\mathrm{J}+2$			$\mathrm{~T}_{\mathrm{A}}(\mathrm{sec})$
$\mathrm{J}+3$			$\mathrm{~V}_{\mathrm{RMAXX}}$ or zero
$\mathrm{J}+4$			$\mathrm{~V}_{\mathrm{RMIN}}$
$\mathrm{J}+5$			$\mathrm{~K}_{\mathrm{E}}$ or zero
$\mathrm{J}+6$			$\mathrm{~T}_{\mathrm{E}}(=0)(\sec)$
$\mathrm{J}+7$			$\mathrm{~K}_{\mathrm{F}}$
$\mathrm{J}+8$			$\mathrm{~T}_{\mathrm{F}}(=0)(\mathrm{sec})$
$\mathrm{J}+9$		0	$\mathrm{~S}_{\mathrm{witch}}$
$\mathrm{J}+10$			E_{1}
$\mathrm{~J}+11$			$\mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{1}\right)$
$\mathrm{J}+12$			E_{2}
$\mathrm{~J}+13$			$\mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{2}\right)$

STATE	$\#$	Description
K		Sensed V_{T}
$\mathrm{K}+1$		Regulator output, V_{R}
$\mathrm{K}+2$		Exciter output, EFD
$\mathrm{K}+3$		Rate feedback integrator

VAR	$\#$	Description
L		K_{E}

IBUS, 'IEEET1', $\mathrm{I}, \mathrm{T}_{\mathrm{R}}, \mathrm{K}_{\mathrm{A}}, \mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{RMAX}}, \mathrm{V}_{\mathrm{RM}} \mathrm{N}, \mathrm{K}_{\mathrm{E}}, \mathrm{T}_{\mathrm{E}}, \mathrm{K}_{\mathrm{F}}, \mathrm{T}_{\mathrm{F}}, 0, \mathrm{E}_{1}, \mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{1}\right), \mathrm{E}_{2}, \mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{2}\right) /$

EXAC1

IEEE Type AC1 Excitation System

CONs	\#	Value	Description
J			$\mathrm{T}_{\mathrm{R}}(\mathrm{sec})$
$\mathrm{J}+1$			$\mathrm{~T}_{\mathrm{B}}(\mathrm{sec})$
$\mathrm{J}+2$			$\mathrm{~T}_{\mathrm{C}}(\mathrm{sec})$
$\mathrm{J}+3$			$\mathrm{~K}_{\mathrm{A}}$
$\mathrm{J}+4$			$\mathrm{~T}_{\mathrm{A}}(\mathrm{sec})$
$\mathrm{J}+5$			$\mathrm{~V}_{\mathrm{RMMA}}$
$\mathrm{J}+6$			$\mathrm{~V}_{\mathrm{RM} \text { a }}$
$\mathrm{J}+7$			$\mathrm{~T}_{\mathrm{E}}>0(\mathrm{sec})$
$\mathrm{J}+8$			$\mathrm{~K}_{\mathrm{F}}$
$\mathrm{J}+9$			$\mathrm{~T}_{\mathrm{F}}>0(\mathrm{sec})$
$\mathrm{J}+10$			$\mathrm{~K}_{\mathrm{C}}$
$\mathrm{J}+11$			$\mathrm{~K}_{\mathrm{D}}$
$\mathrm{J}+12$			$\mathrm{~K}_{\mathrm{E}}$
$\mathrm{J}+13$			E_{1}
$\mathrm{~J}+14$			$\mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{1}\right)$
$\mathrm{J}+15$			E_{2}
$\mathrm{~J}+16$			$\mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{2}\right)$

STATEs	$\#$	Description
K		Sensed E_{T}
$\mathrm{K}+1$		Lead lag
$\mathrm{K}+2$		Regulator output
$\mathrm{K}+3$		$\mathrm{~V}_{\mathrm{E}}$
$\mathrm{K}+4$		Feedback output

IBUS, 'EXAC1', $\mathrm{I}_{\mathrm{R}}, \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{C}}, \mathrm{K}_{\mathrm{A}}, \mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{RMAX}}, \mathrm{V}_{\mathrm{RMIN}}, \mathrm{T}_{\mathrm{E}}, \mathrm{K}_{\mathrm{F}}, \mathrm{T}_{\mathrm{F}}, \mathrm{K}_{\mathrm{C}}, \mathrm{K}_{\mathrm{D}}, \mathrm{K}_{\mathrm{E}}, \mathrm{E}_{1}, \mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{1}\right), \mathrm{E}_{2}, \mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{2}\right) /$

ESAC8B

Basler DECS

CONs	$\#$	Value	Description
J			$\mathrm{T}_{\mathrm{R}}($ sec $)$
$\mathrm{J}+1$			$\mathrm{~K}_{\mathrm{P}}$
$\mathrm{J}+2$			$\mathrm{~K}_{\mathrm{I}}$
$\mathrm{J}+3$			$\mathrm{~K}_{\mathrm{D}}$
$\mathrm{J}+4$			$\mathrm{~T}_{\mathrm{D}}($ sec $)$
$\mathrm{J}+5$			$\mathrm{~K}_{\mathrm{A}}$
$\mathrm{J}+6$			$\mathrm{~T}_{\mathrm{A}}$
$\mathrm{J}+7$			$\mathrm{~V}_{\mathrm{RMAX}}$ or zero
$\mathrm{J}+8$			$\mathrm{~V}_{\mathrm{RMIN}}$
$\mathrm{J}+9$			$\mathrm{~T}_{\mathrm{E}}>0$ (sec)
$\mathrm{J}+10$			$\mathrm{~K}_{\mathrm{E}}$ or zero
$\mathrm{J}+11$			E_{1}
$\mathrm{~J}+12$			$\mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{1}\right)$
$\mathrm{J}+13$			E_{2}
$\mathrm{~J}+14$			$\mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{2}\right)$

STATEs	$\#$	Description
K		Sensed V_{T}
$\mathrm{K}+1$		Integral controller
$\mathrm{K}+2$		Derivative controller
$\mathrm{K}+3$		Voltage regulator
$\mathrm{K}+4$		Exciter output, EFD

VAR	$\#$		Description
L		K_{E}	

IBUS, 'ESAC8B', $\mathrm{I}, \mathrm{T}_{\mathrm{R}}, \mathrm{K}_{\mathrm{P}}, \mathrm{K}_{\mathrm{I}}, \mathrm{K}_{\mathrm{D}}, \mathrm{T}_{\mathrm{D}}, \mathrm{K}_{\mathrm{A}}, \mathrm{T}_{\mathrm{A}}, \mathrm{V}_{\mathrm{RMAX}}, \mathrm{V}_{\mathrm{RMIN}}, \mathrm{T}_{\mathrm{E}}, \mathrm{K}_{\mathrm{E}}, \mathrm{E}_{1}, \mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{1}\right), \mathrm{E}_{2}, \mathrm{~S}_{\mathrm{E}}\left(\mathrm{E}_{2}\right) /$

SEXS

Simplified Excitation System

CONs	$\#$	Value	Description
J			$\mathrm{T}_{\mathrm{A}} / \mathrm{T}_{\mathrm{B}}$
$\mathrm{J}+1$			$\mathrm{~T}_{\mathrm{B}}(>0)(\mathrm{sec})$
$\mathrm{J}+2$			K
$\mathrm{~J}+3$			$\mathrm{~T}_{\mathrm{E}}(\mathrm{sec})$
$\mathrm{J}+4$			$\mathrm{E}_{\mathrm{M} M \mathrm{~N}}($ pu on EFD base $)$
$\mathrm{J}+5$			$\mathrm{E}_{\mathrm{MAX}}$ (pu on EFD base)

STATEs	$\#$	Description
K		First integrator
$\mathrm{K}+1$		Second integrator

IBUS, 'SEXS', I, $\mathrm{T}_{\mathrm{A}} / \mathrm{T}_{\mathrm{B}}, \mathrm{T}_{\mathrm{B}}, \mathrm{K}, \mathrm{T}_{\mathrm{E}}, \mathrm{E}_{\mathrm{M}}$, $\mathrm{E}_{\mathrm{MAX}} /$

$\mathrm{V}=\mathrm{VOTHSG}+\mathrm{VUEL}+\mathrm{VOEL}$

MODELOS DE ESTABILIZADORES

STAB2A

Power Sensitive Stabilizing Unit (ASEA)

CONS	$\#$	Value	Description
J			K_{2}
$\mathrm{~J}+1$			$\mathrm{~T}_{2}(\sec)(>0)$
$\mathrm{J}+2$			$\mathrm{~K}_{3}$
$\mathrm{~J}+3$			$\mathrm{~T}_{3}(\sec)(>0)$
$\mathrm{J}+4$			$\mathrm{~K}_{4}$
$\mathrm{~J}+5$			$\mathrm{~K}_{5}$
$\mathrm{~J}+6$			$\mathrm{~T}_{5}(\sec)(>0)$
$\mathrm{J}+7$			$\mathrm{H}_{\mathrm{LIM}}$

STATEs	$\#$	Description
K		Implicit
$\mathrm{K}+1$		Integration
$\mathrm{K}+2$		State
$\mathrm{K}+3$		Variables

IBUS, 'STAB2A', I, K2, T $\mathrm{T}_{2}, \mathrm{~K}_{3}, \mathrm{~T}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{5}, \mathrm{~T}_{5}, \mathrm{H}_{\mathrm{LIM}}{ }^{\prime}$

MODELOS DE RELEVADORES

LDSHBL, LDSHOW, LDSHZN, LDSHAR, LDSHAL

Underfrequency Load Shedding Model

DYRE Data Record:
I, 'LDSHxx', LID $_{1}, \mathrm{t}_{1}, \mathrm{frac}_{1}, \mathrm{f}_{2}, \mathrm{t}_{2}, \mathrm{frac}_{2}, \mathrm{f}_{3}, \mathrm{t}_{3}, \mathrm{frac}_{3}, \mathrm{~T}_{\mathrm{b}} /$
LID is an explicit load identifier or may be '*' for application to loads of any ID associated with the subsystem type.

Model suffix "xx"	"I" Description
BL	Bus number
OW	Owner number
ZN	Zone number
AR	Area number
AL	0

CONs	Value	Description
J		f_{1}, first load shedding point (Hz)
$\mathrm{J}+1$		t_{1}, first point pickup time (sec)
$\mathrm{J}+2$		fracl , first fraction of load to be shed
$\mathrm{J}+3$		f_{2}, second load shedding point (Hz)
$\mathrm{J}+4$		t_{2}, second fraction pickup time (sec)
$\mathrm{J}+5$		frac2, second fraction of load to be shed
$\mathrm{J}+6$		f_{3}, third load shedding point (Hz)
$\mathrm{J}+7$		t_{3}, third point pickup time (sec)
$\mathrm{J}+8$		frac3, third fraction of load to be shed
$\mathrm{J}+9$		$\mathrm{~T}_{\mathrm{b}}$, breaker time (sec)

Reserved ICONs	Description
N	First point delay flag
$\mathrm{N}+1$	First point time-out flag
$\mathrm{N}+2$	First timer status
$\mathrm{N}+3$	Second point delay flag
$\mathrm{N}+4$	Second point time-out flag
$\mathrm{N}+5$	Second timer status
$\mathrm{N}+6$	Third point delay flag
$\mathrm{N}+7$	Third point time-out flag
$\mathrm{N}+8$	Third timer status

VARs	Description
L	First timer memory
L +1	Second timer memory
L +2	Third timer memory

LVSHBL, LVSHOW, LVSHZN, LVSHAR, LVSHAL

Undervoltage Load Shedding Model

DYRE Data Record:
I, 'LVSHxx', LID, JBUS, V1, T1, F1, V2, T2, F2, V3, T3, F3, TB/
LID is an explicit load identifier or may be '*' for application to loads of any ID associated with the subsystem type.

Model suffix " $\mathbf{x x}$ "	"I" Description
BL	Bus number
OW	Owner number
ZN	Zone number
AR	Area number
AL	0

ICONs	Valu e	Description
M		JBUS, remote bus number where voltage is measured

VARs	Description
L	First timer memory
L +1	Second timer memory
L +2	Third timer memory

* Set JBUS $=0$, if remote bus is same as the local bus to which the load is comnected.

CONs	Value	Description
J		V1, first load shedding point (pu)
$\mathrm{J}+1$		T1, first point pickup time (sec)
$\mathrm{J}+2$		F1, first fraction of load to be shed
$\mathrm{J}+3$		V2, second load shedding point (pu)
$\mathrm{J}+4$		T2, second fraction pickup time (sec)
$\mathrm{J}+5$		F2, second fraction of load to be shed
$\mathrm{J}+6$		V3, third load shedding point (pu)
$\mathrm{J}+7$		T3, third point pickup time (sec)
$\mathrm{J}+8$		F3, third fraction of load to be shed
$\mathrm{J}+9$		TB, breaker time (sec)

Reserved ICONs	Description
N	First point delay flag
$\mathrm{N}+1$	First point time-out flag
$\mathrm{N}+2$	First timer status
$\mathrm{N}+3$	Second point delay flag
$\mathrm{N}+4$	Second point time-out flag
$\mathrm{N}+5$	Second timer status
$\mathrm{N}+6$	Third point delay flag
$\mathrm{N}+7$	Third point time-out flag
$\mathrm{N}+8$	Third timer status

