ANEXO 6

MODELOS DINÁMICOS

Datos de los Modelos de Generadores, Escitadores, Gobernadores y Estabililizadores de Panamá

/* BASE DE DATOS DE PANAMA

/* MODELO DE GENERADORES DE PANAMA 101, 'GENSAL' ,B1, 4,0.02,0.02,2.69,1,0.99,0.833,0.3452,0.3100,0.16,0.19,0.343/ 102, 'GENSAL' ,B2, 4,0.02,0.02,2.69,1,0.99,0.833,0.3452,0.3100,0.16,0.19,0.343/ 108, 'GENSAL' ,B3, 5,0.07,0.08,2.96,1,0.90,0.570,0.4000,0.24,0.10,0.92,1.01/ 97, 'GENSAL' ,F1,9,0.06,0.09,4.50,1,1.02,0.54,0.3,0.155,0.12,0.2,0.67000/ 98,'GENSAL',F2,9,0.06,0.09,4.50,1,1.02,0.54,0.3,0.155,0.12,0.2,0.67000/ 99, 'GENSAL' ,F3,9,0.06,0.09,4.50,1,1.02,0.54,0.3,0.155,0.12,0.2,0.67000/ 94, 'GENSAL' ,L1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 95, 'GENSAL' ,L2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 90, 'GENSAL' ,E1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 91,'GENSAL', E2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 134.'GENSAL',G1,5,0.02,0.09,1.398,1,1.09,0.84,0.47,0.36,0.14,0.19,0.59000/ 135, 'GENSAL', G2, 5, 0.02, 0.09, 1.398, 1, 1.09, 0.84, 0.47, 0.36, 0.14, 0.19, 0.59000/ 136, 'GENSAL', G3, 5, 0.02, 0.09, 1.398, 1, 1.09, 0.84, 0.47, 0.36, 0.14, 0.19, 0.59000/ 140, 'GENSAL', G1, 5, 0.02, 0.09, 2.233, 1, 1.01, 0.63, 0.33, 0.33, 0.12, 0.19, 0.59000/ 140. 'GENSAL' .G2.5.0.02.0.09.2.233.1.1.01.0.63.0.33.0.33.0.12.0.19.0.59000/ 140, 'GENSAL', G3,5,0.02,0.09,2.233,1,1.01,0.63,0.33,0.33,0.12,0.19,0.59000/ 141, 'GENSAL', G4, 5, 0.02, 0.09, 2.210, 1, 1.01, 0.78, 0.38, 0.38, 0.12, 0.19, 0.59000/ 141, 'GENSAL', G5, 5, 0.02, 0.09, 1.991, 1, 1.10, 0.78, 0.38, 0.38, 0.12, 0.19, 0.59000/ 141, 'GENSAL', G6, 5, 0.02, 0.09, 1.991, 1, 1.10, 0.78, 0.38, 0.38, 0.12, 0.19, 0.59000/ 142, 'GENSAL' ,C1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 143, 'GENSAL', C2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 193, 'GENSAL', G1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 193, 'GENSAL', G2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 193, 'GENSAL', G3,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 204, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 204, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 106, 'GENSAL', M1,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 106, 'GENSAL', M2, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2576, 0.157, 0.1, 0.50000/ 106, 'GENSAL', M3, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2576, 0.157, 0.1, 0.50000/ 107, 'GENSAL', M4, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2576, 0.157, 0.1, 0.50000/ 107, 'GENSAL', M5, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2576, 0.157, 0.1, 0.50000/ 107, 'GENSAL', M6, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2576, 0.157, 0.1, 0.50000/ 75, 'GENSAL', P1,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75, 'GENSAL', P2,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75, 'GENSAL', P3,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75, 'GENSAL', P4,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75, 'GENSAL', P5,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 75, 'GENSAL', P6,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76, 'GENSAL', 1P,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76, 'GENSAL' ,2P,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76, 'GENSAL', P0,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76, 'GENSAL', P7,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76, 'GENSAL', P8,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 76, 'GENSAL', P9,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/ 116, 'GENSAL', P1,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 116, 'GENSAL', P2,5.3,0.038,0.149,0.781,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 116, 'GENSAL', P3,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 70,'GENROU', J5,8,0.05,0.7,0.1,1.45,0,2.01,1.3,0.171,0.6,0.116,0.06,0.1,0.50000/ 72,'GENROU', 78,5.936,0.022,0.541,0.045,1.45,0,2.078,1.931,0.188,0.377,0.129,0.162,0.1,0.50000/ 73, 'GENROU', V9,6.5,0.023,0.7,0.1,1.887,0,1.72,1.61,0.2,0.6,0.16,0.145,0.1,0.40000/ 66, 'GENROU', V2,5.1,0.02,0.7,0.1,4.45,0,1.41,1.35,0.156,0.6,0.12,0.06,0.1,0.50000/ 67, 'GENROU', V3,5.1,0.02,0.7,0.1,4.45,0,1.41,1.35,0.156,0.6,0.12,0.06,0.1,0.50000/ 68, 'GENROU', V4,5.1,0.02,0.7,0.1,4.45,0,1.41,1.35,0.156,0.6,0.12,0.06,0.1,0.50000/ 71, 'GENROU' J6.8,0.05,0.7,0.1,1.45,0,2.01,1.3,0.171,0.6,0.116,0.06,0.1,0.50000/ 104, 'GENROU', CO,7,0.025,0.60,0.05,1.35,0,2.50,2.30,0.25,0.40,0.20,0.06,0.1,0.50000/ 113, 'GENROU', GP,8.8,0.04,0.7,0.1,3.0,0,2.01,1,0.684,0.8,0.561,0.06,0.1,0.50000/ 114, 'GENROU', PG,8.8,0.04,0.7,0.1,3.0,0,2.01,1,0.684,0.8,0.561,0.06,0.1,0.50000/ 126, 'GENROU', G1,8,0.05,0.7,0.1,0.5414,0,1.56,1.51,0.23,0.23,0.14,0.06,0.1,0.50000/ 129, 'GENROU' ,G2,8,0.05,0.7,0.1,0.5414,0,1.56,1.51,0.23,0.23,0.14,0.06,0.1,0.50000/ 128, 'GENROU' ,G3,5,0.05,0.7,0.1,3,12,0,1.95,1.89,0.33,0.33,0.15,0.055,0.1,0.50000/ 129, 'GENROU' ,G4,5,0.05,0.7,0.1,4.73,0,1.95,1.95,0.3,0.3,0.16,0.05,0.1,0.50000/ 130, 'GENROU' ,G5,5.0,0.05,0.700,0.10,1.45,0,1.8,1.8,0.2,0.2,0.15,0.068,0.1,0.50000/

151, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 301, 'GENSAL' ,C1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 303, 'GENSAL', S1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 304, 'GENSAL', A1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 302,'GENSAL',P1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 305, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 305, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.50000/ 305, 'GENSAL' ,3 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 307, 'GENSAL', G1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 308, 'GENSAL', G2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 311.'GENSAL' .1.7.0.06.0.09.2.44.1.1.09.0.62.0.2.0.11.0.1.0.1.0.50000/ 311, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 312, 'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 312, 'GENSAL' ,2 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 312, 'GENSAL' ,3 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 313, 'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2240,0.157,0.1,0.50000/ 313, 'GENSAL' ,2 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2240,0.157,0.1,0.50000/ 314, 'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 314. 'GENSAL' .2 .4.6.0.035.0.031.0.93.0.1.46.0.80.0.334.0.2576.0.157.0.1.0.50000/ 314, 'GENSAL' ,3 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 315, 'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 315, 'GENSAL' ,2 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/ 316. 'GENSAL' .1.7.0.06.0.09.2.44.1.1.09.0.62.0.2.0.11.0.1.0.1.0.50000/ 316, 'GENSAL' ,2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 317, 'GENSAL' ,M1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 317, 'GENSAL', M2, 7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 318, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 319, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/ 340, 'GENSAL', P1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 342, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 342, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 343, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 343, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 343, 'GENSAL' ,3 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 516, 'GENSAL' .G1,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 516, 'GENSAL', G2, 5.3, 0.038, 0.149, 0.971, 0, 1.53, 0.830, 0.332, 0.223, 0.14, 0.1, 0.50000/ 516, 'GENSAL', G3, 5.3, 0.038, 0.149, 0.971, 0, 1.53, 0.830, 0.332, 0.223, 0.14, 0.1, 0.50000/ 517, 'GENSAL', G4,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 517, 'GENSAL', G5, 5.3, 0.038, 0.149, 0.971, 0, 1.53, 0.830, 0.332, 0.223, 0.14, 0.1, 0.50000/ 517, 'GENSAL', G6,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/ 517, 'GENSAL', G7, 5.3, 0.038, 0.149, 0.971, 0, 1.53, 0.830, 0.332, 0.223, 0.14, 0.1, 0.50000/ /* MODELO DE GOBERNADORES DE PANAMA 101,'HYGOV', B1,0.03,0.8,14.5,0.03,1,0.167,0.893,0.266,1.15,1.36,0.5,0.08/ 102,'HYGOV', B2,0.03,0.8,14.5,0.03,1,0.167,0.893,0.266,1.15,1.36,0.5,0.08/ 108, 'HYGOV' ,B3,0.03,0.8,14.5,0.03,1,0.167,0.870,0.260,1.15,1.36,0.5,0.08/ 97,'HYGOV' ,F1,0.03,0.5,11.8,0.03,0.2,0.167,0.95,0.05,1.85,1.05,0.5,0.08/ 98,'HYGOV', F2,0.03,0.5,11.8,0.03,0.2,0.167,0.95,0.05,1.85,1.05,0.5,0.08/ 99,'HYGOV', F3,0.03,0.5,11.8,0.03,0.2,0.167,0.95,0.05,1.85,1.05,0.5,0.08/ 94, 'HYGOV' ,L1,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/ 95,'HYGOV' ,L2,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/ 90,'HYGOV', E1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/ 91,'HYGOV', E2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/ 134,'HYGOV',G1,0.03,1.0,16,0.025,0.2,0.167,0.923,0.05,2.52,1.05,0.5,0.08/ 135, 'HYGOV' ,G2,0.03,1.0,16,0.025,0.2,0.167,0.923,0.05,2.52,1.05,0.5,0.08/ 136, 'HYGOV' ,G3,0.03,1.0,16,0.025,0.2,0.167,0.923,0.05,2.52,1.05,0.5,0.08/ 73, 'TGOV1' , V9,0.06,0.05,0.859,0.0,1,3,0.00/ 66,'TGOV1' ,V2,0.06,0.05,0.851,0.0,1,3,0.00/ 67,'TGOV1' ,V3,0.06,0.05,0.851,0.0,1,3,0.00/ 68,'TGOV1', V4,0.06,0.05,0.851,0.0,1,3,0.00/ 128,'TGOV1', G3,0.03,0.05,0.74,0.327,1,3,0.00/ 129, 'TGOV1' ,G4,0.03,0.05,0.74,0.1,1,3,0.00/ 70,'GAST' ,J5,0.04,0.05,0.05,3,1,2,0.84,0.05,0.5/ ,J6,0.04,0.05,0.05,3,1,2,0.84,0.05,0.5/ 71,'GAST' 72,'GAST' ,T8,0.04,0.05,0.05,3,1,2,0.7,0.05,0.5/ 104,'GAST' ,CO.0.03,0.015,0.2,5,1.05,0.67,0.84,0,0.5/ ,GP,0.04,0.2,0.05,3,1,2,0.69,0.05,0.5/ 113,'GAST' 114,'GAST' ,PG,0.04,0.2,0.05,3,1,2,0.69,0.05,0.5/ 126,'GAST' ,G1,0.03,0.01,0.05,3,1,2,0.74,0.05,0.5/ 127, 'GAST' ,G2,0.03,0.01,0.05,3,1,2,0.74,0.05,0.5/

130,'GAST' ,G5,0.03,0.01,0.05,3,1,2,0.7,0.05,0.5/ 106, 'DEGOV1' .M1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 106.'DEGOV1' ,M2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 106, 'DEGOV1', M3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 107, DEGOV1', M4,0,5,0.05,0.95,15,5,1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 107, 'DEGOV1', M5,0,5,0.05,0.95,15,5,1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 107, 'DEGOV1', M5,0,5,0.05,0.95,15,5,1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 75,'DEGOV1', P1,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 75, 'DEGOV1' ,P2,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 75, 'DEGOV1' ,P3,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 75.'DEGOV1' .P4.0.5.0.0476.1.15.5.1.0.25.0.0.002.0.943.0.0.03.0.05/ 75,'DEGOV1', P5,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 75,'DEGOV1',P6,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 76,'DEGOV1',1P,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 76.'DEGOV1' ,2P,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 76,'DEGOV1', P0,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 76,'DEGOV1','P7,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 76,'DEGOV1','P8,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/ 76.'DEGOV1' .P9.0.5.0.0476.1.15.5.1.0.25.0.0.002.0.943.0.0.03.0.05/ 116,'DEGOV1', P1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 116,'DEGOV1', P2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 116,'DEGOV1', P3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 193, 'HYGOV' ,G1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 204, 'HYGOV' ,2 ,0.03,1.0,16,0.025,0.2,0.167,2.95,0.05,2.52,1.05,0.5,0.08/ 151, 'HYGOV' , 1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 301, 'HYGOV' , C1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08 ,C1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 303, 'HYGOV' ,\$1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 304, 'HYGOV' , A1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 302, 'HYGOV' ,P1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/ 305,'HYGOV' 305,'HYGOV' ,1 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/ ,2 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/ 305,'HYGOV' ,3 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/ 142,'HYGOV' ,C1,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/ 143,'HYGOV' ,C2,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/ 307,'HYGOV' ,G1,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/ 308, 'HYGOV' ,G2,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
 308, HYGOV
 ,62,0.05,0.05,0.05,0.2,0.107,0.07,0.45,1,12,0.05,0.007

 311,'HYGOV'
 ,1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/

 311,'HYGOV'
 ,2,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/

 312,'DEGOV1'
 ,1,0,5,0.05,0.95,15,5,1,0.322,0.0,0002,0.8,0.387,0.03,0.05/
 312,'DEGOV1', 2, 0,5,0.05,0.95,15,5.1,0.322,0.0,0.02,0.8,0.387,0.03,0.05/ 312,'DEGOV1', 3, 0,5,0.05,0.95,15,5.1,0.322,0.0,0.02,0.8,0.387,0.03,0.05/ 313,'DEGOV1', 1, 0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 313,'DEGOV1' ,2 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 314, 'DEGOV1' ,1 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 314,'DEGOV1', 2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 314,'DEGOV1', 3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 315.'DEGOV1' .1 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 315, 'DEGOV1' ,2 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 316,'HYGOV', 1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.02,2.52,1.05,0.5,0.08/ 316,'HYGOV', 2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.02,2.52,1.05,0.5,0.08/ M1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 317,'HYGOV', M2,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/ 318,'HYGOV', 1,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/ 319,'HYGOV', 2,0.03,0.8,4.0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
 319; HYGOV
 2,0.03,0.03,4,0.03,0.2,0.107,0.07,0.07,0.07,0.12,50,120,0,007

 340; HYGOV
 P1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/

 342; HYGOV
 1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/

 342; HYGOV
 2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/

 343; HYGOV
 2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/

 343; HYGOV
 1,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/

 343, HYGOV
 ,2,0.03,1.0,14,0.025,0.2,0.107,1.2,0.01,2.8,1.05,0.5,0.08/

 343, 'HYGOV'
 ,2,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/

 343, 'HYGOV'
 ,3,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/

 516, 'DEGOV1'
 ,G1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/

 516, 'DEGOV1'
 ,G2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/

 516,'DEGOV1',G3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 517,'DEGOV1',G4,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 517,'DEGOV1', G5,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/ 517,'DEGOV1', G6,0,5,0.05,0.95,15,5.1,0.322,0.0,0002,0.8,0.387,0.03,0.05/ 517, 'DEGOV1', G7,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/

/* MODELO DE EXCITADORES DE PANAMA 101, 'EXST1', B1,0.025,3,-3,0.0050,0.088,60,0.00133,6,-5.3,0.02,0.1,1.5/ 102, 'EXST1' ,B2,0.025,3,-3,0.0050,0.088,60,0.00133,6,-5.3,0.02,0.1,1.5/ 108; EXST1', B3,0.025,4,-1,0.0080,0.088,50,0.005,10,-10,0.02,0.10,1.5/ 97, EXST1', F1,0.025,3,-3,0.0080,0.088,60,0.00133,6,-5.3,0,0.0,0.3/ 98, 'EXST1', F2,0.025,3,-3,0.0080,0.088,60,0.00133,6,-5.3,0,0.0,0.3/ 99, 'EXST1', F3,0.025,3,-3,0.0080,0.088,60,0.00133,6,-5.3,0,0.0,0.3/ 94,'EXST1', JL1,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0,02,0,1,1.5/ 95,'EXST1', JL2,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/ 90,'EXST1', E1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 91, 'EXST1' ,E2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 70,'IEEET2',J5,0.025,400,0.1,6.59,0,1,1.3,0.2,5,1.3,2.4,0.03,5,0.5/ 71,'IEEET2',J6,0.025,400,0.1,6.59,0,1,1.3,0.2,5,1.3,2.4,0.03,5,0.5/ 72.'ESST4B', T8,0,3.38,3.38,1,-0.87,0.01,1,0,1,-0.87,0,5.92,0,7.4,0.11,0,2/ 73,'EXAC4' ,V9,0,0.2,-0.2,1.149,22.97,1000,0.002,5.236,-4.189,0/ 66, 'IEEET1', V2,0,217.03,1,3,-3,1,0.8,0.078,0.726,0,2.4,0.03,5,0.5/ 67,'IEEET1', V3,0,126.37,1,3,-3,1,0.8,0.078,0.726,0,2.4,0.03,5,0.5/ 68, 'IEEET1' .V4.0.126.37.1.2.0.1.0.8.0.078.0.726.0.2.4.0.03.5.0.5/ 104, 'EXAC1', CO,0,1,1,4000,0.05,56,0,1.5,0.025,0.4,0.1,2,1,9,0.001,10,0.01/ 106, 'ESAC8B', M1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 106, 'ESAC8B', M2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 106, 'ESAC8B', M3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 107, 'ESAC8B', M4,0,100,150,25,0.03,1,0,10,0,1,1,3,8,1.36,4.5,1.5/ 107, 'ESAC8B', M5,0,100,150,25,0.03,1,0,10,0,1,1,3,8,1.36,4.5,1.5/ 107, 'ESAC8B', M5,0,100,150,25,0.03,1,0,10,0,1,1,3,8,1.36,4.5,1.5/ 116, 'ESAC8B', P1,0,100,150,25,0.03,1,0,10,0,1,1,3,8,1.36,4.5,1.5/ 116, 'ESAC8B', p2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 116, 'ESAC8B', p3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 75, 'SEXS' ,P1,0.1,10,100,0.05,0,2.5/ 75, 'SEXS' ,P2,0.1,10,100,0.05,0,2.5/ 75, 'SEXS' ,P3,0.1,10,100,0.05,0,2.5/ 75, 'SEXS' ,P3,0.1,10,100,0.05,0,2.5/ 75, 'SEXS' ,P5,0.1,10,100,0.05,0,2.5/ 75, 'SEXS' ,P6,0.1,10,100,0.05,0,2.5/ 76, 'SEXS' ,1P,0.1,10,100,0.05,0,2.5/ 76, 'SEXS' ,2P,0.1,10,100,0.05,0,2.5/ 76, 'SEXS' ,2P,0.1,10,100,0.05,0,2.5/ 76, 'SEXS' ,P7,0.1,10,100,0.05,0,2.5/ 76, 'SEXS' ,P8,0.1,10,100,0.05,0,2.5/ 76, 'SEXS' ,P9,0.1,10,100,0.05,0,2.5/ 113, 'SEXS' ,GP,0.2,10,100,0.05,0,4/ 114, 'SEXS' ,PG,0.2,10,100,0.05,0,4/ 126, 'SEXS' ,G1,0.2,10,100,0.05,0,4/ 127, 'SEXS' ,G2,0.2,10,100,0.05,0,4/ 128, 'SEXS' ,G3,0.1,10,100,0.05,0,4/ 129, 'SEXS' ,G4,0.1,10,100,0.05,0,4/ 130, 'SEXS' ,G5,0.1,10,100,0.05,0,4/ 134, 'SEXS' ,G1,0.1,10,100,0.05,0,4/ 135, 'SEXS' ,G2,0.1,10,100,0.05,0,4/ 136, 'SEXS' ,G3,0.1,10,100,0.05,0,4/ 140, 'SEXS' ,G1,0.1,10,100,0.05,0,4/ 140, 'SEXS' ,G2,0.1,10,100,0.05,0,4/ 140, 'SEXS' ,G3,0.1,10,100,0.05,0,4/ 141, 'SEXS' ,G4,0.1,10,100,0.05,0,4/ 141, 'SEXS' ,G5,0.1,10,100,0.05,0,4/ 141, 'SEXS' ,G6,0.1,10,100,0.05,0,4/ 193, 'EXST1', G1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 193,'EXST1',G2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 193,'EXST1', G3,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 204,'EXST1', 1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 204, 'EXST1' ,2 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ LASTI', 2, 9025, 3, 30,0080,0080,0000,00027, 3, -3,0,02,0,11,15/
 STI'EXSTI', 1, 0.025, 3, -3,0.0080,0.088,100,0.0027, 3, -3,0.02,0,1,1.5/
 SU1, 'EXSTI', C1,0.025, 3, -3,0.0080,0.088,100,0.0027, 3, -3,0.02,0,1,1.5/
 SU3, 'EXSTI', S1,0.025, 3, -3,0.0080,0.088,100,0.0027, 3, -3,0.02,0,1,1.5/
 SU4, 'EXSTI', A1,0.025, 3, -3,0.0080,0.088,100,0.0027, 3, -3,0.02,0,1,1.5/ 302, 'EXST1', P1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 305, 'EXST1', 1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 305, 'EXST1', 2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 305, 'EXST1', 2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/

142, 'EXST1', C1,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/ 143, 'EXST1', C2,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/ 307, 'EXST1', G1,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/ 308, 'EXST1', G2,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/ 311, 'EXST1', 1, 0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 311, 'EXST1', 2, 0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 312, 'ESAC8B' ,1 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 312, 'ESAC8B' ,2 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 312, 'ESAC8B' ,3 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 313, 'ESAC8B' ,1 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 313, 'ESAC8B' ,2 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 314, 'ESAC8B' ,1 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 314,'ESAC8B', 2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 315, 'ESAC8B' ,1 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 315, 'ESAC8B' ,2 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 314, 'ESAC8B' ,3 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 316,'EXST1', 1, 0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 316,'EXST1', 2, 0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 317,'EXST1', M1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 317, EXST1', M1, 0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
 318, EXST1', 1, 0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/
 318, EXST1', 2, 0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/
 340, 'EXST1', P1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 342, 'EXST1', 1, 0.025,3, -30.0080,0.088,100,0.0027,3, -30.02,0.1,1.5/
 342, 'EXST1', 2, 0.025,3, -30.0080,0.088,100,0.0027,3, -30.02,0.1,1.5/
 343, 'EXST1', 1, 0.025,3, -30.0080,0.088,80,0.0027,3, -30.02,0.1,1.5/ 343, 'EXST1' ,2 ,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/ 343, 'EXST1' ,3 ,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/ 516, 'ESAC8B', G1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 516, 'ESAC8B', G2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ 516, 'ESAC8B', G3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/ MODELO DE ESTABILIZADORES DE PANAMA /*

MODELO DE ESTABILIZADORES DE FANAMA
97, 'STAB2A', F1,1.0,4.4,10,1.8,1.1.41,0.01,0.05/
98, 'STAB2A', F2,1.0,4.4,10,1.8,1.1.41,0.01,0.05/
99, 'STAB2A', F3,1.0,4.4,10,1.8,1.1.41,0.01,0.05/
101, 'STAB2A', B1,1.0,4.4,7.85,1.8,0.785,1.41,0.01,0.03/
102, 'STAB2A', B2,1.0,4.4,7.85,1.8,0.785,1.41,0.01,0.03/
108, 'STAB2A', B3,1.0,4.5,25,2,5,1,0.01,0.03/

MODELOS DE GENERADORES

Power Technologies, Inc.

GENERATOR AND COMPENSATOR MODEL DATA SHEETS GENSAL

GENSAL

Salient Pole Generator Model (Quadratic Saturation on d-Axis)

This model is located at system bu	s #	IBUS,	р	PMECH
machine	#	I.	rm East	EFD
This model uses CONs starting wit	th #	J,	L'fd	VOLT at
and STATEs starting with	#	К.	νT	Terminal
The machine MVA isf MBASE.	for each of uni	ts =		Bus
78OBCE for this muching is	1.2			

ZSORCE for this machine is ______+ j _____ on the above MBASE.

V _T Terminal Bus	GEÌ	NSAL	ETERM → Terminal Voltage
			ANGLE Angle
STATEs	#		Description

SPEED > Speed

ISORCE Source Current

CONs	#	Value	Description
J			T'do (>0) (sec)
J+1			T"do (>0) (sec)
J+2			T" _{qo} (>0) (sec)
J+3			Inertia, H
J+4			Speed damping, D
J+5			Xd
J+6			Xq
J+7			X'd
J+8			$X''_d = X''_q$
J+9			Xl
J+10			S(1.0)
J+11			S(1.2)

STATEs	#	Description
К		E'q
K+1		Ψ"q
K+2		ψkd
K+3		Δ speed (pu)
K+4		Angle (radians)

Note: X_d, X_q, X'_d, X"_d, X"_q, X_l, H, and D are in pu, machine MVA base.

 X''_{q} must be equal to X''_{d} .

IBUS, 'GENSAL', I, T'do, T"do, T"qo, H, D, Xd, Xq, X'd, X"d, Xl, S(1.0), S(1.2)/

PSS/E-30

GENROU

Round Rotor Generator Model (Quadratic Saturation)

This model is located at system bus	# IBUS,		-
machine	# I.	Pm PMECH	SPEED Speed
This model uses CONs starting with	# J,	E _{fd} ►	ISORCE Source Current
and STATEs starting with	# K,	VT VOLT at Terminal GENROU	ETERM Terminal Voltage
The machine MVA is for units = MBASE.	each of	Bus	
ZSORCE for this machine is the above MBASE	+j on		ANGLE Angle

CONs	#	Value	Description
J			T'do (>0) (sec)
J+1			T"do (>0) (sec)
J+2			T'qo (>0) (sec)
J+3			T"qo (>0) (sec)
J+4			Inertia, H
J+5			Speed damping, D
J+6			Xd
J+7			Xq
J+8			X'd
J+9			X'q
J+10			$X''_d = X''_q$
J+11			Xl
J+12			S(1.0)
J+13			S(1.2)

STATEs	#	Description
К		E'q
K+1		E'd
K+2		ψkd
K+3		ψkq
K+4		Δ speed (pu)
K+5		Angle (radians)

Note: X_d, X_q, X'_d, X'_q, X"_d, X"_q, X_l, H, and D are in pu, machine MVA base.

 $X_q^{"}$ must be equal to $X_d^{"}$.

IBUS, 'GENROU', I, T'_{do}, T''_{do}, T''_{qo}, T''_{qo}, H, D, X_d, X_q, X'_d, X'_q, X''_d, X_l, S(1.0), S(1.2)/

MODELOS DE GOBERNADORES

Power Technologies, Inc.

GOVERNOR MODEL DATA SHEETS HYGOV

HYGOV

Hydro Turbine-Governor

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К,
and VARs starting with	#	L.

CONs	#	Value	Description
J			R, permanent droop
J+1			r, temporary droop
J+2			T _r (≥0) governor time constant
J+3			T _f (≥0) filter time constant
J+4			Tg (≥0) servo time constant
J+5			<u>+</u> VELM, gate velocity limit
J+6			G _{MAX} , maximum gate limit
J+7			G _{MIN} , minimum gate limit
J+8			T _W (≥0) water time constant
J+9			A _t , turbine gain
J+10			D _{turb} , turbine damping
J+11			q _{NL} , no load flow

STATEs	#	Description
K		e, filter output
K+1		c, desired gate
K+2		g, gate opening
K+3		q, turbine flow

VARs	#	Description
L		Speed reference
L+1		h, turbine head

IBUS, 'HYGOV', I, R, r, T_r, T_f, Tg, VELM, G_MAX, G_MIN, TW, At, D_turb, q_NL/

PSS/E-30

PROGRAM OPERATION MANUAL: VOLUME II H-19

TGOV1

Steam Turbine-Governor

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K,
and VAR.	#	L.

CONs	#	Value	Description
J			R
J+1			T1 (>0) (sec)
J+2			V _{MAX}
J+3			V _{MIN}
J+4			T ₂ (sec)
J+5			T ₃ (>0) (sec)
J+6			Dt

STATEs	#	Description
К		Valve opening
K+1		Turbine power

VAR	#	Description
L		Reference

Note: V_{MAX} , V_{MIN} , D_t are in per unit on generator base. T_2/T_3 = high-pressure fraction. T_3 = reheater time constant.

IBUS, 'TGOV1', I, R, T1, VMAX, VMIN, T2, T3, $D_t\!/$

PSS/E-30

PROGRAM OPERATION MANUAL: VOLUME II H-35

GAST

Gas Turbine-Governor

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К,
and VAR	#	L.

CONs	#	Value	Description
J			R (speed droop)
J+1			T1 (>0) (sec)
J+2			T ₂ (>0) (sec)
J+3			T3 (>0) (sec)
J+4			Ambient temperature load limit, AT
J+5			KT
J+6			VMAX
J+7			VMIN
J+8			D _{turb}

STATEs	#	Description
К		Fuel valve
K+1		Fuel flow
K+2		Exhaust temperature

VAR	#	Description	
L		Load reference	

IBUS, 'GAST', I, R, T1, T2, T3, AT, KT, VMAX, VMIN, D_{turb} /

PROGRAM OPERATION MANUAL: VOLUME II H-9

DEGOV1

Woodward Diesel Governor

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and ICON	#	М,
and STATEs starting with	#	К,
and VARs starting with	#	L.

IC	CON	#	Value	Description
	М			Droop control: 0 = Throttle feedback 1 = Electric power feedback

CONs	#	Value	Description
J			T ₁ (sec)
J+1			T ₂ (sec)
J+2			T ₃ (sec)
J+3			K
J+4			T ₄ (sec)
J+5			T ₅ (sec)
J+6			T ₆ (sec)
J+7			$T_D (0 \le T_D \le 12 * DELT) (sec)$
J+8			T _{MAX}
J+9			T _{MIN}
J+10			Droop
J+11			T _E

SPEED	DEGOV1	PMECH
PELEC		

STATEs	#	Description
К		Electric control box 1
K+1		Electric control box 2
K+2		Actuator 1
K+3		Actuator 2
K+4		Actuator 3
K+5		Power transducer

VARs	#	Description
L		Reference
L+1		
•		Delay table
L+13		

IBUS, 'DEGOV1', I, Droop Control, T1, T2, T3, K, T4, T5, T6, TD, TMAX, TMIN/, Droop, TE/

PROGRAM OPERATION MANUAL: VOLUME II

12

H-7

MODELOS DE EXCITADORES

Power Technologies, Inc.

EXCITATION SYSTEM MODEL DATA SHEETS EXST1

EXST1

IEEE Type ST1 Excitation System

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К.

CONs	#	Value	Description
J			T _R
J+1			VIMAX
J+2			VIMIN
J+3			T _C
J+4			T _B (sec)
J+5			K _A
J+6			T _A (sec)
J+7			VRMAX
J+8			VRMIN
J+9			K _C
J+10			KF
J+11			T _F (> 0) (sec)

ECOMP ETERM XADIFD		
ETERM	EXST1	EFD
VOEL		

STATEs	#	Description
K		Vmeasured
K+1		Lead lag
K+2		VR
K+3		Feedback

IBUS, 'EXST1', I, T_R, V_{IMAX}, V_{IMIN}, T_C, T_B, K_A, T_A, V_{RMAX}, V_{RMIN}, K_C, K_F, T_F/

V_S = VOTHSG + VUEL + VOEL

IEEET2

IEEE Type 2 Excitation System

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К,
and VAR	#	L.

CONs	#	Value	Description
J			T _R (sec)
J+1			K _A
J+2			T _A (sec)
J+3			V _{RMAX} or zero
J+4			VRMIN
J+5			K _E
J+6			T _E (>0) (sec)
J+7			K _F
J+8			T _{F1} (>0) (sec)
J+9			T _{F2} (>0) (sec)
J+10			E1
J+11			S _E (E ₁)
J+12			E ₂
J+13			S _E (E ₂)

ECOMP		
VOTHSG		EFD
VUEL	IEEET2	- EFD
VOEL		

STATEs	#	Description
K		Sensed V _T
K+1		Regulator output, V _R
K+2		Exciter output, EFD
K+3		First feedback integrator
K+4		Second feedback integrator

VARs	#	Description
L		K _E

 $IBUS, `IEEET2', I, T_{R}, K_{A}, T_{A}, V_{RMAX}, V_{RMIN}, K_{E}, T_{E}, K_{F}, T_{F1}, T_{F2}, E_{1}, S_{E}(E_{1}), E_{2}, S_{E}(E_{2})/2$

PSS/E-30

ESST4B

IEEE Type ST4B Potential or Compounded Source-Controlled Rectifier Exciter

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К.

CONs	#	Value	Description
J			T _R (sec)
J+1			Kpr
J+2			K _{IR}
J+3			V _{RMAX}
J+4			VRMIN
J+5			T _A (sec)
J+6			KPM
J+7			K _{IM}
J+8			V _{MMAX}
J+9			VMMIN
J+10			K _G
J+11			Kp
J+12			KI
J+13			VBMAX
J+14			K _C
J+15			XL
J+16			THETAP

STATEs	#	Description
K		Sensed V _T
K+1		Regulator integrator
K+2		Regulator output, V _R
K+3		VM

IBUS, 'ESST4B', I, TR, KPR, KIR, VRMAX, VRMIN, TA, KPM, KIM, VMMAX, VMMIN, KG, KP, KI, VBMAX, KC, XL, THETAP/

EXAC4

IEEE Type AC4 Excitation System

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К.

CONs	#	Value	•
J			T _R
J+1			VIMAX
J+2			VIMIN
J+3			Tc
J+4			T _B (sec)
J+5			KA
J+6			T _A
J+7			VRMAX
J+8			VRMIN
J+9			KC

ECOMP		
XADIFD		
VOTHSG	EXAC4	EFD
VUEL		r r
VOEL		

STATEs	#	Description
K		V _{measured}
K+1		Lead lag
K+2		VR

IBUS, 'EXAC4', I, T_R, V_{IMAX}, V_{IMIN}, T_C, T_B, K_A, T_A, V_{RMAX}, V_{RMIN}, K_C/

VS = VOTHSG + VUEL + VOEL

IEEET1

IEEE Type 1 Excitation System

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К,
and VAR	#	L.

CONs	#	Value	Description
J			T _R (sec)
J+1			KA
J+2			T _A (sec)
J+3			V _{RMAX} or zero
J+4			VRMIN
J+5			K _E or zero
J+6			T _E (>0) (sec)
J+7			KF
J+8			T _F (>0) (sec)
J+9		0	Switch
J+10			E1
J+11			S _E (E ₁)
J+12			E ₂
J+13			S _E (E ₂)

ECOMP VOTHSG VUEL	EEET1	EFD
-------------------------	-------	-----

STATEs	#	Description
K		Sensed V _T
K+1		Regulator output, V _R
K+2		Exciter output, EFD
K+3		Rate feedback integrator

VAR	#	Description
L		K _E

IBUS, 'IEEET1', I, TR, KA, TA, VRMAX, VRMIN, KE, TE, KF, TF, 0., E1, SE(E1), E2, SE(E2)/

EXAC1

IEEE Type AC1 Excitation System

#	IBUS,
#	I.
#	J,
#	К.
	#

CONs	#	Value	Description
J			T _R (sec)
J+1			T _B (sec)
J+2			T _C (sec)
J+3			K _A
J+4			T _A (sec)
J+5			V _{RMAX}
J+6			VRMIN
J+7			$T_E > 0$ (sec)
J+8			K _F
J+9			$T_F > 0 \text{ (sec)}$
J+10			K _C
J+11			К _D
J+12			K _E
J+13			E1
J+14			$S_E(E_1)$
J+15			E ₂
J+16			S _E (E ₂)

ECOMP		
XADIFD		
VOTHSG	EXAC1	EFD
VUEL	Linioi	-
VOEL		

STATEs	#	Description
K		Sensed E _T
K+1		Lead lag
K+2		Regulator output
K+3		VE
K+4		Feedback output

IBUS, 'EXAC1', I, TR, TB, TC, KA, TA, VRMAX, VRMIN, TE, KF, TF, KC, KD, KE, E1, SE(E1), E2, SE(E2)/

PSS/E-30

ESAC8B

Basler DECS

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К,
and VAR	#	L.

CONs	#	Value	Description
J			T _R (sec)
J+1			Kp
J+2			KI
J+3			КD
J+4			T _D (sec)
J+5			K _A
J+6			T _A
J+7			V _{RMAX} or zero
J+8			VRMIN
J+9			$T_E > 0$ (sec)
J+10			K _E or zero
J+11			E1
J+12			$S_E(E_1)$
J+13			E ₂
J+14			S _E (E ₂)

ECOMP		
VOTHSG		EFD
VUEL	ESAC8B	
VOEL		

ST	TATEs	#	Description
	К		Sensed V _T
]	K+1		Integral controller
]	K+2		Derivative controller
	K+3		Voltage regulator
]	K+4		Exciter output, EFD

VAR	#	Description
L		KE

 $IBUS, `ESAC8B', I, T_R, K_P, K_I, K_D, T_D, K_A, T_A, V_{RMAX}, V_{RMIN}, T_E, K_E, E_1, S_E(E_1), E_2, S_E(E_2)/(10^{-10} M_{\odot}^2) = 0.000 M_{\odot}^2 M_{\odot}^2$

PROGRAM OPERATION MANUAL: VOLUME II G-17

PSS/E-30

SEXS

Simplified Excitation System

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К.

ECOMP VOTHSG VUEL VOEL	SEXS	EFD
---------------------------------	------	-----

CON	Īs	#	Value	Description
J				T _A /T _B
J+1				T _B (≥0) (sec)
J+2				К
J+3				T _E (sec)
J+4				E _{MIN} (pu on EFD base)
J+5				E _{MAX} (pu on EFD base)

STATEs	#	Description
K		First integrator
K+1		Second integrator

IBUS, 'SEXS', I, $\mathrm{T}_{A}/\mathrm{T}_{B},$ $\mathrm{T}_{B},$ K, $\mathrm{T}_{E},$ $\mathrm{E}_{MIN},$ $\mathrm{E}_{MAX}/$

V_S = VOTHSG + VUEL + VOEL

MODELOS DE ESTABILIZADORES

Power Technologies, Inc.

STABILIZER AND EXCITATION LIMITER MODEL DATA SHEETS STAB2A

STAB2A

Power Sensitive Stabilizing Unit (ASEA)

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	К.

CONs	#	Value	Description
J			К2
J+1			T ₂ (sec) (>0)
J+2			K ₃
J+3			T3 (sec) (>0)
J+4			К4
J+5			K5
J+6			T ₅ (sec) (>0)
J+7			H _{LIM}

STATEs	#	Description
К		Implicit
K+1		Integration
K+2		State
K+3		Variables

IBUS, 'STAB2A', I, K2, T2, K3, T3, K4, K5, T5, HLIM/

MODELOS DE RELEVADORES

Power Technologies, Inc.

LOAD CHARACTERISTIC AND LOAD RELAY MODEL DATA SHEETS LDSHxx

LDSHBL, LDSHOW, LDSHZN, LDSHAR, LDSHAL

Underfrequency Load Shedding Model

DYRE Data Record:

I, 'LDSHxx', LID f₁, t₁, frac₁, f₂, t₂, frac₂, f₃, t₃, frac₃, T_b /

LID is an explicit load identifier or may be '*' for application to loads of any ID associated with the subsystem type.

Model suffix "xx"	"I" Description
BL	Bus number
OW	Owner number
ZN	Zone number
AR	Area number
AL	0

CONs	Value	Description
J		fl, first load shedding point (Hz)
J+1		t], first point pickup time (sec)
J+2		frac1, first fraction of load to be shed
J+3		f ₂ , second load shedding point (Hz)
J+4		t ₂ , second fraction pickup time (sec)
J+5		frac ₂ , second fraction of load to be shed
J+6		f3, third load shedding point (Hz)
J+7		t3, third point pickup time (sec)
J+8		frac3, third fraction of load to be shed
J+9		T _b , breaker time (sec)

Reserved	
ICONs	Description
N	First point delay flag
N+1	First point time-out flag
N+2	First timer status
N+3	Second point delay flag
N+4	Second point time-out flag
N+5	Second timer status
N+6	Third point delay flag
N+7	Third point time-out flag
N+8	Third timer status

VARs	Description
L	First timer memory
L+1	Second timer memory
L+2	Third timer memory

LVSHBL, LVSHOW, LVSHZN, LVSHAR, LVSHAL

Undervoltage Load Shedding Model

DYRE Data Record:

I, 'LVSHxx', LID, JBUS, V1, T1, F1, V2, T2, F2, V3, T3, F3, TB/

LID is an explicit load identifier or may be '*' for application to loads of any ID associated with the subsystem type.

Model suffix "xx"	"I" Description
BL	Bus number
OW	Owner number
ZN	Zone number
AR	Area number
AL	0

ICONs	Valu e	Description
М		JBUS, remote bus number where voltage is measured*

* Set JBUS = 0, if remote bus is same as the local bus to which the load is connected.

CONs	Value	Description
J		V1, first load shedding point (pu)
J+1		T1, first point pickup time (sec)
J+2		F1, first fraction of load to be shed
J+3		V2, second load shedding point (pu)
J+4		T2, second fraction pickup time (sec)
J+5		F2, second fraction of load to be shed
J+6		V3, third load shedding point (pu)
J+7		T3, third point pickup time (sec)
J+8		F3, third fraction of load to be shed
J+9		TB, breaker time (sec)

VARs	Description
L	First timer memory
L+1	Second timer memory
L+2	Third timer memory

Reserved	
ICONs	Description
N	First point delay flag
N+1	First point time-out flag
N+2	First timer status
N+3	Second point delay flag
N+4	Second point time-out flag
N+5	Second timer status
N+6	Third point delay flag
N+7	Third point time-out flag
N+8	Third timer status