ANEXO 35 MODELOS DINÁMICOS

Datos de los Modelos de Generadores, Escitadores, Gobernadores y Estabililizadores de Panamá

/* BASE DE DATOS DE PANAMA

```
/* MODELO DE GENERADORES DE PANAMA
101, 'GENSAL', B1, 4,0.02,0.02,2.69,1,0.99,0.833,0.3452,0.3100,0.16,0.19,0.343/
102, 'GENSAL', B2, 4,0.02,0.02,2.69,1,0.99,0.833,0.3452,0.3100,0.16,0.19,0.343/
108, 'GENSAL', B3, 5,0.07,0.08,2.96,1,0.90,0.570,0.4000,0.24,0.10,0.92,1.01/
97, 'GENSAL', F1,9,0.06,0.09,4.50,1,1.02,0.54,0.3,0.155,0.12,0.2,0.67000/
98,'GENSAL',F2,9,0.06,0.09,4.50,1,1.02,0.54,0.3,0.155,0.12,0.2,0.67000/
99, 'GENSAL', F3,9,0.06,0.09,4.50,1,1.02,0.54,0.3,0.155,0.12,0.2,0.67000/
94, 'GENSAL', L1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
95, 'GENSAL', L2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
90, 'GENSAL', E1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
 91,'GENSAL',E2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
134, 'GENSAL', G1,5,0.02,0.09,1.398,1,1.09,0.84,0.47,0.36,0.14,0.19,0.59000/
 135, 'GENSAL', G2,5,0.02,0.09,1.398,1,1.09,0.84,0.47,0.36,0.14,0.19,0.59000/
136, 'GENSAL', G3,5,0.02,0.09,1.398,1,1.09,0.84,0.47,0.36,0.14,0.19,0.59000/
140, 'GENSAL', G1,5,0.02,0.09,2.233,1,1.01,0.63,0.33,0.33,0.12,0.19,0.59000/
140, 'GENSAL', G2,5,0.02,0.09,2.233,1,1.01,0.63,0.33,0.33,0.12,0.19,0.59000/
 140, 'GENSAL', G3,5,0.02,0.09,2.233,1,1.01,0.63,0.33,0.33,0.12,0.19,0.59000/
141, 'GENSAL', G4,5,0.02,0.09,2.210,1,1.01,0.78,0.38,0.38,0.12,0.19,0.59000/
141, 'GENSAL', G5,5,0.02,0.09,1.991,1,1.10,0.78,0.38,0.38,0.12,0.19,0.59000/
141, 'GENSAL', G6,5,0.02,0.09,1.991,1,1.10,0.78,0.38,0.38,0.12,0.19,0.59000/
142, 'GENSAL', C1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
143, 'GENSAL', C2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
193, 'GENSAL', G1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
193, 'GENSAL', G2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
193, 'GENSAL', G3,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
204, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1.0.50000/
204, 'GENSAL', 2, 7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
106, 'GENSAL', M1,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
106, 'GENSAL', M2,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
 106, 'GENSAL', M3,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
107, 'GENSAL', M4,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
107, 'GENSAL', M5,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
 107, 'GENSAL', M6,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
 75, 'GENSAL', P1,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 75, 'GENSAL', P2,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 75, 'GENSAL', P3,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 75, 'GENSAL', P4,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 75, 'GENSAL', P5,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 75, 'GENSAL', P6,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 76, 'GENSAL', 1P,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 76, 'GENSAL' ,2P,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 76, 'GENSAL', P0,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 76, 'GENSAL', P7,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 76, 'GENSAL', P8,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 76, 'GENSAL', P9,3.33,0.021,0.084,0.6369,0,1.84,0.89,0.31,0.257,0.157,0.1,0.50000/
 116, 'GENSAL', P1,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
116, 'GENSAL', P2,5.3,0.038,0.149,0.781,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
 116, 'GENSAL', P3,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
 70, 'GENROU' ,J5,8,0.05,0.7,0.1,1.45,0,2.01,1.3,0.171,0.6,0.116,0.06,0.1,0.50000/ 72, 'GENROU' ,T8,5.936,0.022,0.541,0.045,1.45,0,2.078,1.931,0.188,0.377,0.129,0.162,0.1,0.50000/
 73, 'GENROU', V9,6.5,0.023,0.7,0.1,1.887,0,1.72,1.61,0.2,0.6,0.16,0.145,0.1,0.40000/
 66, 'GENROU', V2,5.1,0.02,0.7,0.1,4.45,0,1.41,1.35,0.156,0.6,0.12,0.06,0.1,0.50000/
 67, 'GENROU' ,V3,5.1,0.02,0.7,0.1,4.45,0,1.41,1.35,0.156,0.6,0.12,0.06,0.1,0.50000/68, 'GENROU' ,V4,5.1,0.02,0.7,0.1,4.45,0,1.41,1.35,0.156,0.6,0.12,0.06,0.1,0.50000/
 71, 'GENROU' ,J6,8,0.05,0.7,0.1,1.45,0,2.01,1.3,0.171,0.6,0.116,0.06,0.1,0.50000/
 104, 'GENROU', CO,7,0.025,0.60,0.05,1.35,0,2.50,2.30,0.25,0.40,0.20,0.06,0.1,0.50000/
113, GENROU', GP,8.8,0.04,0.7,0.1,3.0,0,2.01,1,0.684,0.8,0.561,0.06,0.1,0.50000/
114, GENROU', PG,8.8,0.04,0.7,0.1,3.0,0,2.01,1,0.684,0.8,0.561,0.06,0.1,0.50000/
126, 'GENROU', G1,8,0.05,0.7,0.1,0.5414,0,1.56,1.51,0.23,0.23,0.14,0.06,0.1,0.50000/
127, 'GENROU', G2,8,0.05,0.7,0.1,0.5414,0,1.56,1.51,0.23,0.23,0.14,0.06,0.1,0.50000/
128, GENROU', G3,5,0.05,0.7,0.1,3.12,0,1.95,1.89,0.33,0.33,0.15,0.055,0.1,0.50000/129, GENROU', G4,5,0.05,0.7,0.1,4.73,0,1.95,1.95,0.3,0.3,0.16,0.05,0.1,0.5000/
130, 'GENROU', G5,5.0,0.05,0.700,0.10,1.45,0,1.8,1.8,0.2,0.2,0.15,0.068,0.1,0.50000/
```



```
151, 'GENSAL' ,1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/301, 'GENSAL' ,C1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
303, 'GENSAL', $1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
304, 'GENSAL', A1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
302, 'GENSAL', P1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
305, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/ 305, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
305, 'GENSAL' ,3 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
307, 'GENSAL', G1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
308, 'GENSAL', G2,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
311, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
311, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
312, 'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
312, 'GENSAL', 2, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2576, 0.157, 0.1, 0.50000/
312, 'GENSAL', 3, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2576, 0.157, 0.1, 0.50000/
313, 'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2240,0.157,0.1,0.50000/
313, 'GENSAL', 2, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2240, 0.157, 0.1, 0.50000/
314, 'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
314, 'GENSAL', 2, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2576, 0.157, 0.1, 0.50000/
314, 'GENSAL', 3, 4.6, 0.035, 0.031, 0.93, 0, 1.46, 0.80, 0.334, 0.2576, 0.157, 0.1, 0.50000/
315, 'GENSAL' ,1 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
315, 'GENSAL' ,2 ,4.6,0.035,0.031,0.93,0,1.46,0.80,0.334,0.2576,0.157,0.1,0.50000/
316, 'GENSAL' .1 .7.0.06.0.09.2.44.1.1.09.0.62.0.2.0.11.0.1.0.1.0.50000/
316, GENSAL', 2, 7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
317, GENSAL', M1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
317, 'GENSAL', M2, 7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
318, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
319, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.30,0.1,0.1,0.50000/
340, 'GENSAL', P1,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
342, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
342, 'GENSAL', 2, 7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
343, 'GENSAL' ,1 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
343, 'GENSAL' ,2 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
343, 'GENSAL' ,3 ,7,0.06,0.09,2.44,1,1.09,0.62,0.2,0.11,0.1,0.1,0.50000/
516, 'GENSAL', G1,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
516, 'GENSAL', G2,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
516, 'GENSAL', G3,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
517, 'GENSAL', G4,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
517, 'GENSAL', G5,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
517, 'GENSAL', G6,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
517, 'GENSAL', G7,5.3,0.038,0.149,0.971,0,1.53,0.830,0.332,0.223,0.14,0.1,0.50000/
/* MODELO DE GOBERNADORES DE PANAMA
101, 'HYGOV' ,B1,0.03,0.8,14.5,0.03,1,0.167,0.893,0.266,1.15,1.36,0.5,0.08/
102,'HYGOV'
                  ,B2,0.03,0.8,14.5,0.03,1,0.167,0.893,0.266,1.15,1.36,0.5,0.08/
108,'HYGOV'
                  ,B3,0.03,0.8,14.5,0.03,1,0.167,0.870,0.260,1.15,1.36,0.5,0.08/
 97, HYGOV' ,F1,0.03,0.5,11.8,0.03,0.2,0.167,0.95,0.05,1.85,1.05,0.5,0.08/
 98,'HYGOV' ,F2,0.03,0.5,11.8,0.03,0.2,0.167,0.95,0.05,1.85,1.05,0.5,0.08/
99,'HYGOV' ,F3,0.03,0.5,11.8,0.03,0.2,0.167,0.95,0.05,1.85,1.05,0.5,0.08/
 94, 'HYGOV' ,L1,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/
 95, 'HYGOV' ,L2,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/
 90, 'HYGOV' ,E1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
91, 'HYGOV' ,E2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
                 ,E2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
 134,'HYGOV' ,G1,0.03,1.0,16,0.025,0.2,0.167,0.923,0.05,2.52,1.05,0.5,0.08/
 135,'HYGOV'
                  ,G2,0.03,1.0,16,0.025,0.2,0.167,0.923,0.05,2.52,1.05,0.5,0.08/
 136,'HYGOV'
                  .G3.0.03.1.0.16.0.025.0.2.0.167.0.923.0.05.2.52.1.05.0.5.0.08/
 73,'TGOV1' ,V9,0.06,0.05,0.859,0.0,1,3,0.00/
 66, 'TGOV1', V2,0.06,0.05,0.851,0.0,1,3,0.00/
 67,'TGOV1'
                 ,V3,0.06,0.05,0.851,0.0,1,3,0.00/
68,'TGOV1' ,V4,0.06,0.05,0.851,0.0,1,3,0.00/
128,'TGOV1' ,G3,0.03,0.05,0.74,0.327,1,3,0.00/
129, 'TGOV1' ,G4,0.03,0.05,0.74,0.1,1,3,0.00/
 70,'GAST' ,J5,0.04,0.05,0.05,3,1,2,0.84,0.05,0.5/
 71,'GAST'
                ,J6,0.04,0.05,0.05,3,1,2,0.84,0.05,0.5/
 72,'GAST'
                ,T8,0.04,0.05,0.05,3,1,2,0.7,0.05,0.5/
104,'GAST'
                ,CO,0.03,0.015,0.2,5,1.05,0.67,0.84,0,0.5/
                ,GP,0.04,0.2,0.05,3,1,2,0.69,0.05,0.5/
113,'GAST'
114,'GAST'
                ,PG,0.04,0.2,0.05,3,1,2,0.69,0.05,0.5/
126,'GAST'
                ,G1,0.03,0.01,0.05,3,1,2,0.74,0.05,0.5/
127, 'GAST'
                ,G2,0.03,0.01,0.05,3,1,2,0.74,0.05,0.5/
```



```
130, 'GAST' ,G5,0.03,0.01,0.05,3,1,2,0.7,0.05,0.5/
 106, 'DEGOV1', M1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
106,'DEGOV1' ,M2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
106, 'DEGOV1', M3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
107,'DEGOV1', M5,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/107,'DEGOV1', M5,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/107,'DEGOV1', M6,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
 75, 'DEGOV1', P1,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 75,'DEGOV1' ,P2,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
75,'DEGOV1' ,P3,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 75,'DEGOV1',P4,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 75,'DEGOV1',P5,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 75, 'DEGOV1' ,P6,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/76, 'DEGOV1' ,1P,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 76,'DEGOV1' ,2P,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 76, 'DEGOV1', P0,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 76,'DEGOV1',P7,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 76, 'DEGOV1', P8,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 76,'DEGOV1', P9,0,5,0.0476,1,15,5.1,0.25,0,0.002,0.943,0,0.03,0.05/
 116,'DEGOV1',P1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
116,'DEGOV1', P2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
116, 'DEGOV1', P3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
193, 'HYGOV' ,G1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
 193,'HYGOV'
                      ,G2,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
 193,'HYGOV'
                       ,G3,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
204,'HYGOV'
                       ,1,0.03,1.0,16,0.025,0.2,0.167,2.95,0.05,2.52,1.05,0.5,0.08/
204, 'HYGOV'
                      ,2,0.03,1.0,16,0.025,0.2,0.167,2.95,0.05,2.52,1.05,0.5,0.08/
151,'HYGOV' ,1 ,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
301,'HYGOV'
                       ,C1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
303,'HYGOV'
                       ,$1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
304, 'HYGOV'
                      ,A1,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
302, 'HYGOV'
                      ,P1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
305,'HYGOV'
305,'HYGOV'
                       ,1 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
                      ,2 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
305, 'HYGOV' ,3 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/
142,'HYGOV'
                      ,C1,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
143,'HYGOV' ,C2,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
307,'HYGOV' ,G1,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
308, 'HYGOV' ,G2,0.03,0.8,4,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
311,'HYGOV' ,1,0.03,1.0,16,0.025,0.2,0.107,0.07,0.45,1,112,0.3,0.05/
311,'HYGOV' ,2,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
312,'DEGOV1' ,1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
312, 'DEGOV1' ,2 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
312, 'DEGOV1' ,3 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
313, 'DEGOV1' ,1 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
313,'DEGOV1' ,2 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
314, 'DEGOV1' ,1 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
314,'DEGOV1' ,2 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/314,'DEGOV1' ,3 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
315.'DEGOV1' ,1 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
315, 'DEGOV1' ,2 ,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
316, 'HYGOV' ,1 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.02,2.52,1.05,0.5,0.08/
316, 'HYGOV' ,2 ,0.03,1.0,16,0.025,0.2,0.167,1.2,0.02,2.52,1.05,0.5,0.08/
317, 'HYGOV', M1, 0.03, 1.0, 16, 0.025, 0.2, 0.167, 0.8, 0.05, 2.52, 1.05, 0.5, 0.08/
317,'HYGOV' ,M2 ,0.03,1.0,16,0.025,0.2,0.167,0.8,0.05,2.52,1.05,0.5,0.08/
318,'HYGOV' ,1,0.03,0.84,0.03,0.2,0.167,0.87,0.45,1,1.2,0.5,0.08/
319,'HYGOV' ,2,0.03,0.84,0.03,0.2,0.167,0.87.0.45,1,1.2,0.5,0.08/
340,'HYGOV' ,P1,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/342,'HYGOV' ,2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/342,'HYGOV' ,2,0.03,1.0,16,0.025,0.2,0.167,1.2,0.01,2.52,1.05,0.5,0.08/343,'HYGOV' ,1,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/
343,'HYGOV' ,2,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/
343,'HYGOV' ,3,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/
343,'HYGOV' ,3,0.03,1.0,14,0.025,0.2,0.167,1.2,0.01,2.8,1.05,0.5,0.08/
516,'DEGOV1' ,G1,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
516,'DEGOV1' ,G2,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
516,'DEGOV1',G3,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
517, 'DEGOV1', G4,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
517, DEGOV1', G5,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
517, DEGOV1', G6,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
517, 'DEGOV1', G7,0,5,0.05,0.95,15,5.1,0.322,0.0,0.002,0.8,0.387,0.03,0.05/
```



```
/* MODELO DE EXCITADORES DE PANAMA
 101, 'EXST1' ,B1,0.025,3,-3,0.0050,0.088,60,0.00133,6,-5.3,0.02,0.1,1.5/
 102, 'EXST1' ,B2,0.025,3,-3,0.0050,0.088,60,0.00133,6,-5.3,0.02,0.1,1.5/
 108, EXST1', B3,0.025,4,-1,0.0080,0.088,50,0.005,10,-10,0.02,0.10,1.5/
97, EXST1', F1,0.025,3,-3,0.0080,0.088,60,0.00133,6,-5.3,0,0.0,0.3/
98, EXST1', F2,0.025,3,-3,0.0080,0.088,60,0.00133,6,-5.3,0,0.0,0.3/
  99,'EXST1' ,F3,0.025,3,-3,0.0080,0.088,60,0.00133,6,-5.3,0,0.0,0.3/
 94, EXST1', L1,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/
95, EXST1', L2,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/
90, EXST1', E1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
 91,'EXST1' ,E2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
 70, TEEET2' ,J5,0.025,400,0.1,6.59,0,1,1.3,0.2,5,1.3,2.4,0.03,5,0.5/71, TEEET2' ,J6,0.025,400,0.1,6.59,0,1,1.3,0.2,5,1.3,2.4,0.03,5,0.5/
 72, 'ESST4B', T8,0,3.38,3.38,1,-0.87,0.01,1,0,1,-0.87,0,5.92,0,7.4,0.11,0,2/
 73,'EXAC4' ,V9,0,0.2,-0.2,1.149,22.97,1000,0.002,5.236,-4.189,0/
 66, 'IEEET1', V2,0,217.03,1,3,-3,1,0.8,0.078,0.726,0,2.4,0.03,5,0.5/
 67, 'IEEET1', V3,0,126.37,1,3,-3,1,0.8,0.078,0.726,0,2.4,0.03,5,0.5/
 68, 'IEEET1', V4,0,126.37,1,2,0,1,0.8,0.078,0.726,0,2.4,0.03,5,0.5/
 104, 'EXAC1', CO,0,1,1,4000,0.05,56,0,1.5,0.025,0.4,0.1,2,1,9,0.001,10,0.01/
 106, 'ESAC8B', M1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
106, 'ESAC8B', M2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
106, 'ESAC8B', M3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
107, 'ESAC8B' ,M4,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/

107, 'ESAC8B' ,M5,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/

107, 'ESAC8B' ,M6,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/

116, 'ESAC8B' ,P1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
 116, 'ESAC8B' ,P2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
116, 'ESAC8B' ,P3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
 75, 'SEXS' ,P1,0.1,10,100,0.05,0,2.5/
 75, 'SEXS' ,P2,0.1,10,100,0.05,0,2.5/
75, 'SEXS' ,P3,0.1,10,100,0.05,0,2.5/
75, 'SEXS' ,P4,0.1,10,100,0.05,0,2.5/
75, 'SEXS' ,P5,0.1,10,100,0.05,0,2.5/
 75, 'SEXS' ,P6,0.1,10,100,0.05,0,2.5/
 76, 'SEXS' ,1P,0.1,10,100,0.05,0,2.5/
76, 'SEXS' ,2P,0.1,10,100,0.05,0,2.5/
76, 'SEXS' ,P0,0.1,10,100,0.05,0,2.5/
 76, 'SEXS' ,P7,0.1,10,100,0.05,0,2.5/
 76, 'SEXS' ,P8,0.1,10,100,0.05,0,2.5/
76, 'SEXS' ,P9,0.1,10,100,0.05,0,2.5/
113, 'SEXS' ,GP,0.2,10,100,0.05,0,4/
 114, 'SEXS' ,PG,0.2,10,100,0.05,0,4/
 126, 'SEXS' ,G1,0.2,10,100,0.05,0,4/
 127, 'SEXS' ,G2,0.2,10,100,0.05,0,4/
 128, 'SEXS' ,G3,0.1,10,100,0.05,0,4/
 129, 'SEXS' ,G4,0.1,10,100,0.05,0,4/
 130, 'SEXS' ,G5,0.1,10,100,0.05,0,4/
134, 'SEXS' ,G1,0.1,10,100,0.05,0,4/
 135, 'SEXS' ,G2,0.1,10,100,0.05,0,4/
 136, 'SEXS' ,G3,0.1,10,100,0.05,0,4/
 140, 'SEXS' ,G1,0.1,10,100,0.05,0,4/
140, 'SEXS' ,G2,0.1,10,100,0.05,0,4/
 140, 'SEXS' ,G3,0.1,10,100,0.05,0,4/
 141, 'SEXS' ,G4,0.1,10,100,0.05,0,4/
 141, 'SEXS' ,G5,0.1,10,100,0.05,0,4/
141, 'SEXS' ,G6,0.1,10,100,0.05,0,4/
 193, 'EXST1', G1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
 193,'EXST1' ,G2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
193, 'EXST1' ,G3,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 204, 'EXST1' ,1 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
 204, 'EXST1' ,2 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
204, EXST1', 1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
301, EXST1', C1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
303, EXST1', S1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
304, EXST1', A1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
 302, 'EXST1', P1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
305, EXST1', 1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
305, EXST1', 2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
305, EXST1', 3,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
```



```
142, 'EXST1', C1,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/
143, 'EXST1', C2,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/
307, 'EXST1', G1,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/
308, 'EXST1', G2,0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/
311, 'EXST1' ,1 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/ 311, 'EXST1' ,2 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
312, 'ESAC8B' ,1 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
312, 'ESAC8B' ,2 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
312, 'ESAC8B' ,3 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
313, 'ESAC8B', 1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
313, 'ESAC8B' ,2 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
314, 'ESAC8B' ,1 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
314, 'ESAC8B' ,2 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
315, 'ESAC8B' ,1 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
315, 'ESAC8B' ,2 ,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
314, 'ESAC8B', 3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
316, EXST1' ,1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
316, EXST1' ,2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
317, EXST1' ,M1 ,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
317, 'EXST1', M2, 0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
318, 'EXST1', 1, 0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/
318, 'EXST1', 2, 0.02,10,-10,0.025,0.10,30,0.05,3.5,-3.1,0.06,0.1,1.5/
340, 'EXST1', P1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
342, 'EXST1' ,1,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
342, 'EXST1' ,2,0.025,3,-3,0.0080,0.088,100,0.0027,3,-3,0.02,0.1,1.5/
343, 'EXST1' ,1,0.025,3,-3,0.0080,0.088,00.0027,3,-3,0.02,0.1,1.5/
343, 'EXST1' ,2,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/
343, 'EXST1' ,3 ,0.025,3,-3,0.0080,0.088,80,0.0027,3,-3,0.02,0.1,1.5/
516, 'ESAC8B', G1,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
516, 'ESAC8B', G2,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
516, 'ESAC8B' ,G3,0,100,150,25,0.03,1,0,10,0,1,1,3.8,1.36,4.5,1.5/
```

MODELO DE ESTABILIZADORES DE PANAMA 97,'STAB2A' ,F1,1.0,4.4,10,1.8,1,1.41,0.01,0.05/ 98, 'STAB2A' ,F2,1.0,4.4,10,1.8,1,1.41,0.01,0.05/ 99, 'STAB2A' ,F3,1.0,4.4,10,1.8,1,1.41,0.01,0.05/ 101, 'STAB2A' ,B1,1.0,4.4,7.85,1.8,0.785,1.41,0.01,0.03/ 102, 'STAB2A' ,B2,1.0,4.4,7.85,1.8,0.785,1.41,0.01,0.03/

108, 'STAB2A', B3,1.0,4.5,25,2,5,1,0.01,0.03/

MODELOS DE GENERADORES

GENERATOR AND COMPENSATOR MODEL DATA SHEETS GENSAL

Power Technologies, Inc.

GENSAL

Salient Pole Generator Model (Quadratic Saturation on d-Axis)

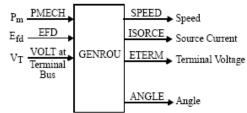
This model is located at system bus	# IBUS,	p PMECH.	SPEED → Speed
machine	# I.	EFD .	ISORCE Source Current
This model uses CONs starting with	# J,	TIOT TO	
and STATEs starting with	# K.	V _T VOLT at GENSAL	ETERM Terminal Voltage
The machine MVA is for MBASE.	each of units =	Bus	ANGLE Angle
ZSORCE for this machine is the above MBASE.	+jon	<u> </u>	P. Ing .e

CONs	#	Value	Description
J			T'do (>0) (sec)
J+1			T"do (>0) (sec)
J+2			T"qo (>0) (sec)
J+3			Inertia, H
J+4			Speed damping, D
J+5			Xd
J+6			X_q
J+7			X'd
J+8			$X''_d = X''_q$
J+9			Xl
J+10			S(1.0)
J+11			S(1.2)

STATEs	#	Description
K		E'q
K+1		Ψ"q
K+2		ψkd
K+3		Δ speed (pu)
K+4		Angle (radians)

$$\begin{split} \text{Note:} & \quad X_d, \, X_q, \, X^*_d, \, X^*_d, \, X^*_q, \, X_l, \, H, \, \text{and} \, D \, \text{are in pu}, \\ & \quad \text{machine MVA base.} \\ & \quad X^*_q \, \text{must be equal to} \, X^*_d. \end{split}$$

 $\text{IBUS, 'GENSAL', I, T'}_{do}, \text{T''}_{do}, \text{T''}_{qo}, \text{H, D, X}_{d}, \text{X}_{q}, \text{X'}_{d}, \text{X''}_{d}, \text{X}_{l}, \text{S(1.0), S(1.2)/}$


UME II

PROGRAM OPERATION MANUAL: VOLUME II

GENROU

Round Rotor Generator Model (Quadratic Saturation)

This model is located at system by	ıs # IBUS,
machine	# I.
This model uses CONs starting wi	ith # J,
and STATEs starting with	# K,
The machine MVA is must s = MBASE.	for each of
ZSORCE for this machine is the above MBASE	+ jon

CONs	#	Value	Description
J			T'do (>0) (sec)
J+1			T"do (>0) (sec)
J+2			T'qo (>0) (sec)
J+3			T"qo (>0) (sec)
J+4			Inertia, H
J+5			Speed damping, D
J+6			Xd
J+7			X_q
J+8			X'd
J+9			X'q
J+10			$X''_d = X''_q$
J+11			Xl
J+12			S(1.0)
J+13			S(1.2)

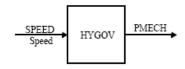
STATEs	#	Description
K		E'q
K+1		E'd
K+2		ψkd
K+3		ψkq
K+4		Δ speed (pu)
K+5		Angle (radians)

Note: X_d , X_q , X'_d , X'_q , X''_d , X''_q , X_l , H, and D are in pu, machine MVA base. $X''_q \text{ must be equal to } X''_d.$

 $IBUS, \ 'GENROU', I, T'_{do}, T'_{do}, T'_{qo}, T''_{qo}, H, D, X_d, X_{q_1}, X'_d, X'_{q_2}, X''_d, X_l, S(1.0), S(1.2)/(1.0), S(1.2)/(1.0)$

AL: VOLUME II E-29

MODELOS DE GOBERNADORES

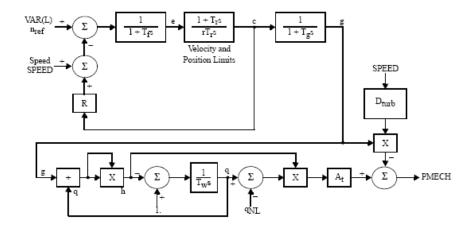

GOVERNOR MODEL DATA SHEETS HYGOV

Power Technologies, Inc.

HYGOV

Hydro Turbine-Governor

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K,
and VARs starting with	#	L.

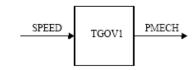


CONs	#	Value	Description
J			R, permanent droop
J+1			r, temporary droop
J+2			T _r (>0) governor time constant
J+3			T _f (>0) filter time constant
J+4			T _g (>0) servo time constant
J+5			± VELM, gate velocity limit
J+6			G _{MAX} , maximum gate limit
J+7			G _{MIN} , minimum gate limit
J+8			T _W (>0) water time constant
J+9			A _t , turbine gain
J+10			D _{turb} , turbine damping
J+11			gyπ , no load flow

STATEs	#	Description
K		e, filter output
K+1		c, desired gate
K+2		g, gate opening
K+3		q, turbine flow

VARs	#	Description
L		Speed reference
L+1		h, turbine head

IBUS, 'HYGOV', I, R, r, T_r, T_f, T_g, VELM, G_MAX, G_MIN, T_W, A_t, D_{turb}, q_NL/

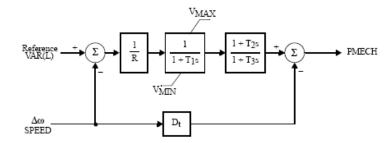

H-19
SOOTIBLICA DE PANA DE LOS SERVICIOS DE LOS SERVICIOS

PSS/E-30

TGOV1

Steam Turbine-Governor

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K,
and VAR	#	L.


CONs	#	Value	Description
J			R
J+1			T ₁ (>0) (sec)
J+2			V_{MAX}
J+3			V_{MIN}
J+4			T ₂ (sec)
J+5			T ₃ (>0) (sec)
J+6			Dt

STATEs	#	Description
K		Valve opening
K+1		Turbine power

VAR	#	Description	
L		Reference	

Note: V_{MAX} , V_{MDN} , D_t are in per unit on generator base. T_2/T_3 = high-pressure fraction. T_3 = reheater time constant.

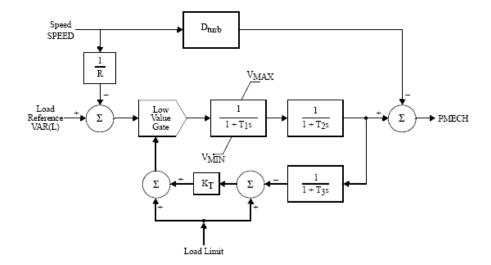
IBUS, 'TGOV1', I, R, T1, VMAX, VMIN, T2, T3, Dt/

GAST

Gas Turbine-Governor

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K,
and VAR	#	L.

SPEED Speed	GAST	PMECH Power
-------------	------	----------------


CONs	#	Value	Description
J			R (speed droop)
J+1			T ₁ (>0) (sec)
J+2			T ₂ (>0) (sec)
J+3			T ₃ (>0) (sec)
J+4			Ambient temperature load limit, AT
J+5			K _T
J+6			V _{MAX}
J+7			V_{MIN}
J+8			D _{turb}

STATEs	#	Description
K		Fuel valve
K+1		Fuel flow
K+2		Exhaust temperature

VAR	#	Description
L		Load reference

IBUS, 'GAST', I, R, T $_1$, T $_2$, T $_3$, AT, K $_T$, V $_{MAX}$, V $_{MIN}$, D $_{turb}$ /

PSS/E-30

PROGRAM OPERATION MANUAL: VOLUME II

de

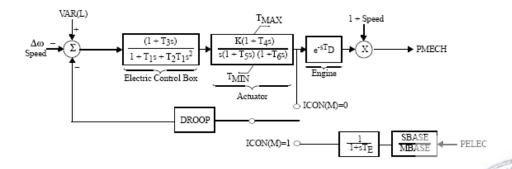
DEGOV1

Woodward Diesel Governor

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and ICON	#	M,
and STATEs starting with	#	K,
and VARs starting with	#	L.

SPEED	DEGOV1	PMECH
PELEC		

ı	ICON	#	Value	Description
	M			Droop control:
				0 = Throttle feedback
				1 = Electric power feedback


CONs	#	Value	Description
J			T ₁ (sec)
J+1			T ₂ (sec)
J+2			T ₃ (sec)
J+3			K
J+4			T ₄ (sec)
J+5			T ₅ (sec)
J+6			T ₆ (sec)
J+7			$T_D (0 \le T_D \le 12 * DELT) (sec)$
J+8			T _{MAX}
J+9			T_{MIN}
J+10			Droop
J+11			TF

PSS/E-30

STATEs	#	Description
K		Electric control box 1
K+1		Electric control box 2
K+2		Actuator 1
K+3		Actuator 2
K+4		Actuator 3
K+5		Power transducer

VARs	#	Description
L		Reference
L+1		
		Delay table
L+13		

 $IBUS, \ 'DEGOV1', I, Droop \ Control, \ T_1, \ T_2, \ T_3, \ K, \ T_4, \ T_5, \ T_6, \ T_D, \ T_{MAX}, \ T_{MIN}/, \ Droop, \ T_{E}/T_{MAX}, \ T_{MIN}/T_{MAX}, \ T_{MIN}/T_$

PROGRAM OPERATION MANUAL: VOLUME II

de

MODELOS DE EXCITADORES

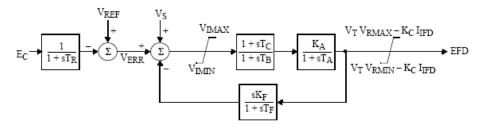
EXCITATION SYSTEM MODEL DATA SHEETS

EXST1

Power Technologies, Inc.

EXST1

IEEE Type ST1 Excitation System


This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K.

ECOMP .		I
ETERM		
XADIFD		
VOTHSG .	EXST1	EFD -
VUEL		
VOEL		

CONs	#	Value	Description
J			T_R
J+1			V_{IMAX}
J+2			VIMIN
J+3			T _C
J+4			TB (sec)
J+5			KA
J+6			T _A (sec)
J+7			V _{RMAX}
J+8			V _{RMIN}
J+9			K _C
J+10			KF
J+11			Tp (> 0) (sec)

STATEs	#	Description
K		Vmeasured
K+1		Lead lag
K+2		V_R
K+3		Feedback

IBUS, 'EXST1', I, T_R, V_{IMAX}, V_{IMIN}, T_C, T_B, K_A, T_A, V_{RMAX}, V_{RMIN}, K_C, K_F, T_F/

 $V_S = VOTHSG + VUEL + VOEL$

PSS/E-30

IEEET2

IEEE Type 2 Excitation System

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K,
and VAR	#	L.

CONs	#	Value	Description
J			T _R (sec)
J+1			K _A
J+2			T _A (sec)
J+3			V _{RMAX} or zero
J+4			V_{RMIN}
J+5			K _E
J+6			T _E (>0) (sec)
J+7			K _F
J+8			TF1 (>0) (sec)
J+9			T _{F2} (>0) (sec)
J+10			El
J+11			$S_{E}(E_{1})$
J+12			E ₂
J+13			$S_{E}(E_{2})$

I	STATEs	#	Description
	K		Sensed V _T
ı	K+1		Regulator output, V _R
ı	K+2		Exciter output, EFD
	K+3		First feedback integrator
	K+4		Second feedback integrator

	VARs	#	Description
[L		K _E

 $\text{IBUS, 'IEEET2', I, T}_{R}, \, K_{A}, \, T_{A}, \, V_{RMAX}, \, V_{RMIN}, \, K_{E}, \, T_{E}, \, K_{F}, \, T_{F1}, \, T_{F2}, \, E_{1}, \, S_{E}(E_{1}), \, E_{2}, \, S_{E}(E_{2}) / C_{1}, \, C_{1}, \, C_{2}, \, C_{$

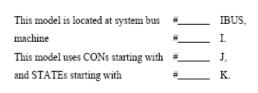
SOUTH DE LOS SERVICES

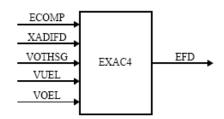
 ${\bf ESST4B}$ ${\bf IEEE\ Type\ ST4B\ Potential\ or\ Compounded\ Source-Controlled\ Rectifier\ Exciter}$

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K.

ECOMP ETERM		
ITERM XADIFD		EFD
VOTHSG	ESST4B	
VOEL VUEL		

CONs	#	Value	Description
J			T _R (sec)
J+1			KpR
J+2			K _{IR}
J+3			V_{RMAX}
J+4			V_{RMIN}
J+5			T _A (sec)
J+6			K_{PM}
J+7			K _{IM}
J+8			V_{MMAX}
J+9			V _{MMIN}
J+10			K _G
J+11			Кp
J+12			K _I
J+13			V_{BMAX}
J+14			K _C
J+15			X_L
J+16			THETAP


STATEs	#	Description
K		Sensed V _T
K+1		Regulator integrator
K+2		Regulator output, V _R
K+3		$V_{\mathbf{M}}$


 $IBUS, `ESST4B', I, T_R, K_{PR}, K_{IR}, V_{RMAX}, V_{RMIN}, T_A, K_{PM}, K_{IM}, V_{MMAX}, V_{MMIN}, K_G, K_P, K_I, V_{BMAX}, K_C, X_L, THETAP/$

E II G-29

IEEE Type AC4 Excitation System

EXAC4

CC	Νs	#	Value	Description
	J			$T_{\mathbb{R}}$
J.	+1			V_{IMAX}
J.	+2			V _{IMIN}
J.	+3			TC
J.	+4			T _B (sec)
J.	+5			KA
J.	+6			$T_{\mathbf{A}}$
	+7			V _{RMAX}
J.	+8			V _{RMIN}
J.	+9			K _C

STATEs	#	Description	
K		$V_{ m measured}$	
K+1		Lead lag	
K+2		V_R	

IBUS, 'EXAC4', I, T_R , V_{IMAX} , V_{IMIN} , T_C , T_B , K_A , T_A , V_{RMAX} , V_{RMIN} , K_C /

VS = VOTHSG + VUEL + VOEL

PROGRAM OPERATION MANUAL: VOLUME II

IEEET1

IEEE Type 1 Excitation System

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K,
and VAR	#	L.

VOTHSG VUEL VOEL	IEEET1	EFD →
------------------------	--------	-------

CONs	#	Value	Description
J			T _R (sec)
J+1			KA
J+2			T _A (sec)
J+3			V _{RMAX} or zero
J+4			V _{RMIN}
J+5			KE or zero
J+6			T _E (>0) (sec)
J+7			KF
J+8			T _F (>0) (sec)
J+9		0	Switch
J+10			E ₁
J+11			$S_{E}(E_{1})$
J+12			E ₂
J+13			S _F (E ₂)

STATEs	#	Description	
K		Sensed V _T	
K+1		Regulator output, V _R	
K+2		Exciter output, EFD	
K+3		Rate feedback integrator	

VAR	#	Description	
L		K _E	

 $IBUS, \ 'IEEET1', I, T_R, K_A, T_A, V_{RMAX}, V_{RMIN}, K_E, T_E, K_F, T_F, 0., E_1, S_E(E_1), E_2, S_E(E_2)/R_{RMIN}, S_E(E_1)/R_{RMIN}, S_E(E_$

GOTORIO DE LOS SELVO

 $\label{eq:exact} \textbf{EXAC1}$ $\label{eq:exact} \textbf{IEEE Type AC1 Excitation System}$

This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K.

ECOMP .		
XADIFD		
VOTHSG	EXAC1	EFD
VUEL	2.2.101	_
VOEL		

	CONs	#	Value	Description
[J			T _R (sec)
	J+1			T _B (sec)
	J+2			T _C (sec)
	J+3			K _A
	J+4			T _A (sec)
[J+5			V_{RMAX}
	J+6			V_{RMIN}
ſ	J+7			T _E > 0 (sec)
	J+8			K _F
I	J+9			T _F > 0 (sec)
ſ	J+10			K _C
ſ	J+11			K _D
ſ	J+12			KE
ſ	J+13			E ₁
ſ	J+14			$S_{E}(E_{1})$
I	J+15			E ₂
ľ	J+16			$S_{E}(E_{2})$

STATEs	#	Description	
K		Sensed E _T	
K+1		Lead lag	
K+2		Regulator output	
K+3		V_E	
K+4		Feedback output	

 $IBUS, \ `EXAC1', I, T_R, T_B, T_C, K_A, T_A, V_{RMAX}, V_{RMIN}, T_E, K_F, T_F, K_C, K_D, K_E, E_1, S_E(E_1), E_2, S_E(E_2)/(10^{-5})$

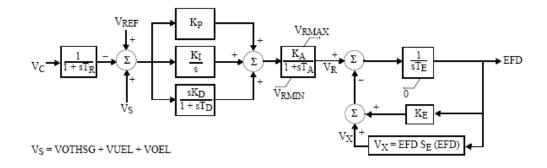
ME II G-35

PSS/E-30

ESAC8B

Basler DECS

This model is located at system bus	#	IBUS
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K,
and VAR	#	L.

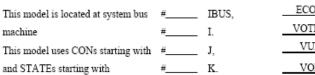

VOTHSG ESAC8B EFD VUEL VOEL	VUEL
-------------------------------	------

CONs	#	Value	Description
J			T _R (sec)
J+1			Кp
J+2			K _I
J+3			K _D
J+4			T _D (sec)
J+5			KA
J+6			$T_{\mathbf{A}}$
J+7			V _{RMAX} or zero
J+8			V_{RMIN}
J+9			T _E > 0 (sec)
J+10			K _E or zero
J+11			E ₁
J+12			$S_E(E_1)$
J+13			E ₂
J+14			S _E (E ₂)

STATE	s #	Description
K		Sensed V _T
K+1		Integral controller
K+2		Derivative controller
K+3		Voltage regulator
K+4		Exciter output, EFD

VAR	#	Description
L		KE

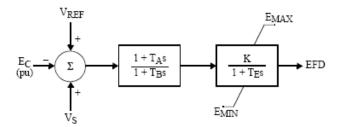
 $\text{IBUS, 'ESAC8B', I, } T_{R}, K_{P}, K_{I}, K_{D}, T_{D}, K_{A}, T_{A}, V_{RMAX}, V_{RMIN}, T_{E}, K_{E}, E_{1}, S_{E}(E_{1}), E_{2}, S_{E}(E_{2}) / C_{E}(E_{1}) / C_{E}$



PROGRAM OPERATION MANUAL: VOLUME II

SEXS

Simplified Excitation System



ECOMP VOTHSG VUEL VOEL	SEXS	EFD→
---------------------------------	------	------

CONs	#	Value	Description
J			T_A/T_B
J+1			T _B (>0) (sec)
J+2			K
J+3			TE (sec)
J+4			E _{MIN} (pu on EFD base)
J+5			E _{MAX} (pu on EFD base)

STATEs	#	Description	
K		First integrator	
K+1		Second integrator	

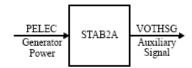
IBUS, 'SEXS', I, $\mathrm{T_A/T_B}, \mathrm{T_B}, \mathrm{K}, \mathrm{T_E}, \mathrm{E_{MIN}}, \mathrm{E_{MAX}}/$

 $V_S = VOTHSG + VUEL + VOEL$

PROGRAM OPERATION MANUAL: VOLUME II

MODELOS DE ESTABILIZADORES

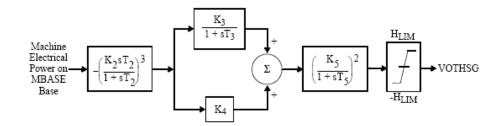
STABILIZER AND EXCITATION LIMITER MODEL DATA SHEETS


Power Technologies, Inc.

STAB2A

STAB2A

Power Sensitive Stabilizing Unit (ASEA)


This model is located at system bus	#	IBUS,
machine	#	I.
This model uses CONs starting with	#	J,
and STATEs starting with	#	K.

I	CONs	#	Value	Description
I	J			К2
I	J+1			T ₂ (sec) (>0)
I	J+2			K ₃
I	J+3			T ₃ (sec) (>0)
I	J+4			K ₄
I	J+5			K ₅
I	J+6			T ₅ (sec) (>0)
I	J+7			H _{LIM}

STATEs	#	Description	
K		Implicit	
K+1		Integration	
K+2		State	
K+3		Variables	

IBUS, 'STAB2A', I, K_2 , T_2 , K_3 , T_3 , K_4 , K_5 , T_5 , H_{LIM}

ME II VIORIDE LOS STATES

PSS/E-30

MODELOS DE RELEVADORES

LOAD CHARACTERISTIC AND LOAD RELAY MODEL DATA SHEETS LDSHxx

Power Technologies, Inc.

LDSHBL, LDSHOW, LDSHZN, LDSHAR, LDSHAL

Underfrequency Load Shedding Model

DYRE Data Record:

I, 'LDSHxx', LID f_1 , t_1 , $frac_1$, f_2 , t_2 , $frac_2$, f_3 , t_3 , $frac_3$, T_b

LID is an explicit load identifier or may be '*' for application to loads of any ID associated with the subsystem type.

Model suffix "xx"	"I" Description
BL	Bus number
OW	Owner number
ZN	Zone number
AR	Area number
AL	0

CONs	Value	Description
J		f ₁ , first load shedding point (Hz)
J+1		t1, first point pickup time (sec)
J+2		frac1, first fraction of load to be shed
J+3		f ₂ , second load shedding point (Hz)
J+4		t2, second fraction pickup time (sec)
J+5		frac2, second fraction of load to be shed
J+6		f3, third load shedding point (Hz)
J+7		t3, third point pickup time (sec)
J+8		frac3, third fraction of load to be shed
J+9		Tb, breaker time (sec)

0		37.2	0 1 1 1 0
ond fraction pickup time (sec)			Second point delay flag
second fraction of load to be shed		N+4	Second point time-out f
rd load shedding point (Hz)		N+5	Second timer status
rd point pickup time (sec)		N+6	Third point delay flag
third fraction of load to be shed		N+7	Third point time-out flag
eaker time (sec)		N+8	Third timer status
Description	l		

Reserved ICONs

Description

First point delay flag First point time-out flag First timer status

VARs	Description	
L	First timer memory	
L+1	Second timer memory	
L+2	Third timer memory	

PROGRAM OPERATION MANUAL: VOLUME II I-21

de

LVSHBL, LVSHOW, LVSHZN, LVSHAR, LVSHAL

Undervoltage Load Shedding Model

DYRE Data Record:

I, 'LVSHxx', LID, JBUS, V1, T1, F1, V2, T2, F2, V3, T3, F3, TB/

LID is an explicit load identifier or may be '*' for application to loads of any ID associated with the subsystem type.

Model suffix "xx"	"I" Description
BL	Bus number
OW	Owner number
ZN	Zone number
AR	Area number
AL	0

	Valu	
ICONs	е	Description
M		JBUS, remote bus number where
		voltage is measured*

Set JBUS = 0, if remote bus is same as the local bus to which the load is connected.

CONs	Value	Description
J		V1, first load shedding point (pu)
J+1		T1, first point pickup time (sec)
J+2		F1, first fraction of load to be shed
J+3		V2, second load shedding point (pu)
J+4		T2, second fraction pickup time (sec)
J+5		F2, second fraction of load to be shed
J+6		V3, third load shedding point (pu)
J+7		T3, third point pickup time (sec)
J+8		F3, third fraction of load to be shed
J+9		TB, breaker time (sec)

VARs	Description	
L	First timer memory	
L+1	Second timer memory	
L+2	Third timer memory	

Reserved	
ICONs	Description
N	First point delay flag
N+1	First point time-out flag
N+2	First timer status
N+3	Second point delay flag
N+4	Second point time-out flag
N+5	Second timer status
N+6	Third point delay flag
N+7	Third point time-out flag
N+8	Third timer status

DLUME II I-27

PROGRAM OPERATION MANUAL: VOLUME II *